满分5 > 高中数学试题 >

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(...

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(manfen5.com 满分网)=1,
(1)求f(1),f(manfen5.com 满分网),f(9)的值,
(2)如果f(x)+f(2-x)<2,求x的取值范围.
(1)对题设条件中的恒等式进行赋值,依次可求出f(1),f(),f(9)的值 (2)利用题设条件将f(x)+f(2-x)<2这为f[x(2-x)]<f(),再利用函数f(x)是定义在(0,+∞)上的减函数解不等式. 【解析】 (1)令x=y=1,则f(1)=f(1)+f(1),∴f(1)=0(2分) 令x=3,y=,则f(1)=f(3)+f(),∴f(3)=-1 ∴f()=f()=f()+f()=2(4分) ∴f(9)=f(3×3)=f(3)+f(3)=-2(6分) (2)∵f(x)+f(2-x)=f[x(2-x)]<2=f(),(8分) 又由函数f(x)是定义在(0,+∞)上的减函数得:(11分) 解之得:.(13分)
复制答案
考点分析:
相关试题推荐
设函数f(x)=ax2+bx+1(a、b∈R)(x∈R)的最小值为f(-1)=0,
(1) 求实数a、b的值;
(2) 当x∈[-2,2]时,求函数ϕ(x)=ax2+btx+1的最大值g(t).
查看答案
已知f(x)=loga(1-x)(a>0,且a≠1)
(1)求f(x)的定义域;
(2)求使f(x)>0成立的x的取值范围.
查看答案
某地煤气公司规定,居民每个月使用的煤气费由基本月租费、保险费和超额费组成.每个月的保险费为3元,当每个月使用的煤气量不超过a(单位:m3,且4≤a≤5)时,只缴纳基本月租费c元和保险费3元;如果超过这个使用量,超出的部分按计费.设某居民月使用的煤气量为x(m3),该月的煤气费为y元,则y=f(x).若f(4)=4,f(25)=14,f(35)=19,求f(x)的解析式.
查看答案
(1)计算:manfen5.com 满分网
(2)求等式中的x的值:10x+lg2=2000.
查看答案
已知A={x|a-1≤x≤a+3},B={x|x<-2或x>5}
(1)若A∩B=∅,求a的取值范围;
(2)若A∪B=B,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.