满分5 > 高中数学试题 >

已知圆C的圆心坐标为C(2,-1),且被直线x-y-1=0所截得弦长是2, (1...

已知圆C的圆心坐标为C(2,-1),且被直线x-y-1=0所截得弦长是2manfen5.com 满分网
(1)求圆的方程;
(2)已知A为直线l:x-y+1=0上一动点,过点A的直线与圆相切于点B,求切线段|AB|的最小值.
(1)利用点到直线的距离公式求出圆心C到已知x-y-1=0的距离d,由弦长的一半及弦心距,利用垂径定理及勾股定理求出圆的半径,由圆心与半径写出圆的标准方程即可; (2)利用点到直线的距离公式求出圆心C到直线x-y+1=0的距离,此距离为圆心到直线的最短距离,此时垂足为A的位置,由圆的半径,利用勾股定理求出此时切相等的长即可. 【解析】 (1)∵圆心C(2,-1)到直线x-y-1=0的距离d==,截取的弦长为2, ∴圆的半径r==2, 则圆C的方程为(x-2)2+(y+1)2=4; (2)∵圆心C(2,-1)到直线x-y+1=0的距离为=2,半径为2, ∴切线段|AB|的最小值为=2.
复制答案
考点分析:
相关试题推荐
某学校共有高一、高二、高三学生2000名,各年级男、女生人数如图:manfen5.com 满分网
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)求x的值;
(2)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(3)已知y≥245,z≥245,求高三年级中女生比男生多的概率.
查看答案
manfen5.com 满分网为了让学生更多的了解“数学史”知识,某中学高一年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据频率分布表,解答下列问题:
序号
(i)
分组
(分数)
组中值(Gi频数
(人数)
频率(Fi
1[60,70)650.16
2[70,80)7522
3[80,90)85140.28
4[90,100]95
合    计501
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于80分的同学能获奖,那么可以估计在参加的800名学生中大概有多少同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出S的值.
查看答案
口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5.甲先摸出一个球,记下编号为a,放回袋中后,乙再摸一个球,记下编号为b.
(Ⅰ)求“a+b=6”的事件发生的概率;
(Ⅱ)若点(a,b)落在圆x2+y2=21内,则甲赢,否则算乙赢,这个游戏规则公平吗?试说明理由.
查看答案
某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为    cm. 查看答案
求过点A(2,4)向圆x2+y2=4所引的切线方程    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.