(1)等差数列{an}中,由a10=30,a20=50.解得a1=12,d=2,由此能求出数列{an}的通项an.
(2)由an=2n+10,知bn=2=22n=4n,由此能够证明数列{bn}是等比数列.
(3)由nbn=n•4n,知Tn=1•4+2•42+…+n•4n,由此利用错位相减法能求出数列{nbn}的前n项和Tn.
(1)【解析】
设数列{an}首项为a1,公差为d,
依题意知,解得a1=12,d=2,
∴an=12+(n-1)×2=2n+10.
(2)证明:∵an=2n+10,
∴bn=2=22n=4n,
∴==4,
∴数列{bn}是以首项b1=4,公比为4的等比数列.
(3)【解析】
∵nbn=n•4n,
∴Tn=1•4+2•42+…+n•4n,①
4Tn=1•42+2•43+…+n•4n+1,②
①-②,得-3Tn=4+42+…+4n-n•4n+1=-n•4n+1=,
∴Tn=.