满分5 > 高中数学试题 >

设集合等于( ) A.{x|x≤1} B.{x|1≤x<2} C.{x|0<x≤...

设集合manfen5.com 满分网等于( )
A.{x|x≤1}
B.{x|1≤x<2}
C.{x|0<x≤1}
D.{x|0<x<1}
集合A与集合B的公共元素构成集合A∩B,由此利用A={x|2x-2<1}={x|x<2},B={x|1-x≥0}={x|x≤1},能求出A∩B. 【解析】 ∵A={x|2x-2<1}={x|x-2<0}={x|x<2}, B={x|1-x≥0}={x|x≤1}, ∴A∩B={x|x≤1}. 故选A.
复制答案
考点分析:
相关试题推荐
定义:若函数f(x)对于其定义域内的某一数x,有f(x)=x,则称x是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数manfen5.com 满分网的图象上,求b的最小值.
(参考公式:A(x1,y1),B(x2,y2)的中点坐标为manfen5.com 满分网
查看答案
已知定义在(0,+∞)上的函数f(x),对于定义域内任意的x、y恒有f(xy)=f(x)+f(y),且当f(x),x>1时f(x)<0恒成立.
(1)求f(1);
(2)证明:函数f(x),f(x)在(0,+∞)是减函数;
(3)若x∈[1,+∞)时,不等式f(manfen5.com 满分网)<0恒成立,求实数a的取值范围.
查看答案
如图,△OAB是边长为4的正三角形,记△OAB位于直线x=t(0<t<6)左侧的图形的面积为f(t),试求f(t)的解析式.

manfen5.com 满分网 查看答案
函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求函数f(x)的解析式;
(2)若函数manfen5.com 满分网,试判断函数g(x)的奇偶性.
查看答案
已知函数y=manfen5.com 满分网的定义域是A,函数y=manfen5.com 满分网(a>0)在[0,2]上的值域为B.若A⊆B,求实数a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.