满分5 > 高中数学试题 >

已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<...

已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n).则m=    ,n=   
由题意,可先化简A集合,再由B集合的形式及A∩B=(-1,n)直接作出判断,即可得出两个参数的值 【解析】 A={x∈R||x+2|<3}={x∈R|-5<x<1}, 又集合B={x∈R|(x-m)(x-2)<0},A∩B=(-1,n). 如图 由图知m=-1,n=1 故答案为-1,1
复制答案
考点分析:
相关试题推荐
定义在(-1,1)上的函数manfen5.com 满分网;当x∈(-1,0)时,f(x)>0,若manfen5.com 满分网manfen5.com 满分网,则P,Q,R的大小关系为( )
A.R>Q>P
B.R>P>Q
C.P>R>Q
D.Q>P>R
查看答案
关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有8个不同的实根;
其中假命题的个数是( )
A.0
B.1
C.2
D.3
查看答案
已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调增函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.
查看答案
设t>0,已知函数f (x)=x2(x-t)的图象与x轴交于A、B两点.
(1)求函数f (x)的单调区间;
(2)设函数y=f(x)在点P(x,y)处的切线的斜率为k,当x∈(0,1]时,k≥-manfen5.com 满分网恒成立,求t的最大值;
(3)有一条平行于x轴的直线l恰好与函数y=f(x)的图象有两个不同的交点C,D,若四边形ABCD为菱形,求t的值.
查看答案
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:manfen5.com 满分网x+8(0<x≤120).已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.