满分5 > 高中数学试题 >

已知函数f(x)=ax2+1(a>0),g(x)=x3+bx. (1)若曲线y=...

已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;
(2)当a=3,b=-9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.
(1)根据曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a、b的值; (2)当a=3,b=-9时,设h(x)=f(x)+g(x)=x3+3x2-9x+1,求导函数,确定函数的极值点,进而可得k≤-3时,函数h(x)在区间[k,2]上的最大值为h(-3)=28;-3<k<2时,函数h(x)在在区间[k,2]上的最大值小于28,由此可得结论. 【解析】 (1)f(x)=ax2+1(a>0),则f'(x)=2ax,k1=2a,g(x)=x3+bx,则g'(x)=3x2+b,k2=3+b, 由(1,c)为公共切点,可得:2a=3+b  ① 又f(1)=a+1,g(1)=1+b, ∴a+1=1+b,即a=b,代入①式可得:a=3,b=3. (2)当a=3,b=-9时,设h(x)=f(x)+g(x)=x3+3x2-9x+1 则h′(x)=3x2+6x-9,令h'(x)=0,解得:x1=-3,x2=1; ∴k≤-3时,函数h(x)在(-∞,-3)上单调增,在(-3,2]上单调减,所以在区间[k,2]上的最大值为h(-3)=28 -3<k<2时,函数h(x)在在区间[k,2]上的最大值小于28 所以k的取值范围是(-∞,-3]
复制答案
考点分析:
相关试题推荐
设函数f(x)=ex-ax-2
(Ⅰ)求f(x)的单调区间
(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值.
查看答案
时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格x(单位:元/套)满足的关系式manfen5.com 满分网,其中2<x<6,m为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求m的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
查看答案
选修4-5:不等式选讲
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.
(Ⅰ)求a的值;
(Ⅱ)若manfen5.com 满分网恒成立,求k的取值范围.
查看答案
已知函数f(x)=|x-2|-|x-5|
(Ⅰ)证明:-3≤f(x)≤3;
(Ⅱ)求不等式f(x)≥x2-8x+15的解集.
查看答案
已知函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求实数k,a的值;
(2)若函数manfen5.com 满分网,试判断函数g(x)的奇偶性,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.