满分5 > 高中数学试题 >

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分...

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)设manfen5.com 满分网,求证:Tn<3.
(Ⅰ)利用数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项,建立方程,求出公差与公比,即可得到数列{an},{bn}的通项公式; (Ⅱ)利用错位相减法求出数列的和,即可证得结论. (Ⅰ)【解析】 设d、q分别为等差数列{an}、等比数列{bn}的公差与公比,且d>0 由a1=1,a2=1+d,a3=1+2d,分别加上1,1,3有b1=2,b2=2+d,b3=4+2d…(2分) ∵数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项 ∴(2+d)2=2(4+2d),∴d2=4, ∵d>0,∴d=2,∴…(4分) ∴…(6分) (II)证明:,① .② ①-②,得.…(8分) ∴.…(10分) ∵.∴…(12分)
复制答案
考点分析:
相关试题推荐
如图,正方形OABC的边长为2.
(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件“|OP|>1”的概率;
(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于manfen5.com 满分网”的概率是.

manfen5.com 满分网 查看答案
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,点M是SC的中点,且SA=AB=BC=1,AD=manfen5.com 满分网
(1)求四棱锥S-ABCD的体积;
(2)求证:DM∥平面SAB;
(3)求直线SC和平面SAB所成的角的正弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=2msin2x-2manfen5.com 满分网(m>0)的定义域为[0,manfen5.com 满分网],值域为[-5,4].
(1)求m,n的值;
(2)求函数g(x)=msinx+manfen5.com 满分网ncosx(x∈R)的单调递增区间.
查看答案
已知正方形ABCD,PA⊥平面ABCD,AB=1,PA=t(t>0),当t变化时,直线PD与平面PBC所成角的正弦值的取值范围是   
manfen5.com 满分网 查看答案
点P是椭圆manfen5.com 满分网与圆C2:x2+y2=a2-b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1、F2分别为椭圆C1的左右焦点,则椭圆C1的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.