满分5 > 高中数学试题 >

已知函数图象上斜率为3的两条切线间的距离为,函数. (1)若函数g(x)在x=1...

已知函数manfen5.com 满分网图象上斜率为3的两条切线间的距离为manfen5.com 满分网,函数manfen5.com 满分网
(1)若函数g(x)在x=1处有极值,求g(x)的解析式;
(2)若函数g(x)在区间[-1,1]上为增函数,且b2-mb+4≥g(x)在x∈[-1,1]时恒成立,求实数m的取值范围.
(1)先求出斜率为3的切线方程,根据两条切线间的距离求出a值,再讨论满足g′(x)=0的点附近的导数的符号的变化情况,来确定极值,求出b即可. (2)欲使函数g(x)在区间[-1,1]上为增函数只需转化成g′(x)≥0在区间[-1,1]上恒成立,求出b的范围,根据g(x)在x∈[-1,1]是增函数知g(x)的最大值为g(1),只需使b2-mb+4≥g(1)恒成立即可. 【解析】 (1)∵, ∴由=3得x=±a, 即切点坐标为(a,a),(-a,-a) ∴切线方程为y-a=3(x-a),或y+a=3(x+a)(2分) 整理得3x-y-2a=0或3x-y+2a=0 ∴, 解得a=±1, ∴f(x)=x3. ∴g(x)=x3-3bx+3(4分) ∵g′(x)=3x2-3b,g(x)在x=1处有极值, ∴g′(1)=0, 即3×12-3b=0,解得b=1 ∴g(x)=x3-3x+3(6分) (2)∵函数g(x)在区间[-1,1]上为增函数, ∴g′(x)=3x2-3b≥0在区间[-1,1]上恒成立, ∴b≤0, 又∵b2-mb+4≥g(x)在区间[-1,1]上恒成立, ∴b2-mb+4≥g(1)(8分) 即b2-mb+4≥4-3b,若b=0,则不等式显然成立,若b≠0, 则m≥b+3在b∈(-∞,0)上恒成立 ∴m≥3. 故m的取值范围是[3,+∞)
复制答案
考点分析:
相关试题推荐
已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)设manfen5.com 满分网,求证:Tn<3.
查看答案
如图,正方形OABC的边长为2.
(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件“|OP|>1”的概率;
(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于manfen5.com 满分网”的概率是.

manfen5.com 满分网 查看答案
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,点M是SC的中点,且SA=AB=BC=1,AD=manfen5.com 满分网
(1)求四棱锥S-ABCD的体积;
(2)求证:DM∥平面SAB;
(3)求直线SC和平面SAB所成的角的正弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=2msin2x-2manfen5.com 满分网(m>0)的定义域为[0,manfen5.com 满分网],值域为[-5,4].
(1)求m,n的值;
(2)求函数g(x)=msinx+manfen5.com 满分网ncosx(x∈R)的单调递增区间.
查看答案
已知正方形ABCD,PA⊥平面ABCD,AB=1,PA=t(t>0),当t变化时,直线PD与平面PBC所成角的正弦值的取值范围是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.