满分5 > 高中数学试题 >

已知函数f(x)=lnx-ax2-2x(a<0) (Ⅰ)若函数f(x)存在单调递...

已知函数f(x)=lnx-manfen5.com 满分网ax2-2x(a<0)
(Ⅰ)若函数f(x)存在单调递减区间,求a的取值范围;
(Ⅱ)若a=-manfen5.com 满分网且关于x的方程f(x)=-manfen5.com 满分网x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.
(I)利用导数进行理解,即f'(x)<0在(0,+∞)上有解.可得ax2+2x-1>0在正数范围内至少有一个解,结合根的判别式列式,不难得到a的取值范围. (II)关于x的方程f(x)=-x+b可化为:x2-x+lnx-b=0,设方程的左边为g(x),利用导数讨论g(x)的单调性,得到它在[1,4]上先减再增,并且得到g(2)是极小值,g(1)和g(4)是极大值,由此建立不等式组并解之,可得实数b的取值范围. 【解析】 (I)对函数求导数,得f'(x)=(x>0) 依题意,得f'(x)<0在(0,+∞)上有解.即ax2+2x-1>0在x>0时有解. ∴△=4+4a>0且方程ax2+2x-1=0至少有一个正根. 再结合a<0,得-1<a<0…(5分) (II)a=-时,f(x)=-x+b即x2-x+lnx-b=0 设g(x)=x2-x+lnx-b,则g'(x)= ∴当x∈(0,1)时,g'(x)>0;当x∈(1,2)时,g'(x)<0;当x∈(2,4)时,g'(x)>0. 得函数g(x)在(0,1)和(2,4)上是增函数.在(1,2)上是减函数 ∴g(x)的极小值为g(2)=ln2-b-2;g(x)的极大值为g(1)=-b-,且g(4)=-b-2+2ln2;---(5分) ∵方程g(x)=0在[1,4]上恰有两个不相等的实数根. ∴,解之得:ln2-2<b≤-…(5分)
复制答案
考点分析:
相关试题推荐
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
已知椭圆C的长轴长与短轴长之比为manfen5.com 满分网,焦点坐标分别为F1(-2,0),F2(2,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知A(-3,0),B(3,0),P是椭圆C上异于A、B的任意一点,直线AP、BP分别交y轴于M、N,求manfen5.com 满分网的值.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知向量manfen5.com 满分网=(cosα,1),manfen5.com 满分网=(-2,sinα),manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(1)求sinα的值;
(2)求manfen5.com 满分网的值.
查看答案
不等式f(x)=manfen5.com 满分网的定义域为集合A,关于x的不等式manfen5.com 满分网R)的解集为B,求使A∩B=B的实数a取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.