满分5 > 高中数学试题 >

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=...

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2.
(Ⅰ)求a,b的值;
(Ⅱ)若方程f(x)+m=0在manfen5.com 满分网内有两个不等实根,求m的取值范围(其中e为自然对数的底数);
(Ⅲ)令g(x)=f(x)-kx,若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),AB的中点为C(x,0),求证:g(x)在x处的导数g′(x)≠0.
(Ⅰ)只需要利用导数的几何意义即可获得两个方程解得两个未知数; (Ⅱ)先要利用导数研究好函数h(x)=f(x)+m=2lnx-x2+m,的单调性,结合单调性及在内有两个不等实根通过数形结合易知m满足的关系从而问题获得解答; (Ⅲ)用反证法现将问题转化为有关方程根的形式,在通过研究函数的单调性进而通过最值性找到矛盾即可获得解答. 【解析】 (Ⅰ)f′(x)=-2bx,,f(2)=aln2-4b. ∴,且aln2-4b=-6+2ln2+2. 解得a=2,b=1. (Ⅱ)f(x)=2lnx-x2,令h(x)=f(x)+m=2lnx-x2+m, 则, 令h′(x)=0,得x=1(x=-1舍去). 在内, 当时,h′(x)>0, ∴h(x)是增函数; 当x∈[1,e]时,h′(x)<0, ∴h(x)是减函数, 则方程h(x)=0在内有两个不等实根的充要条件是: 即. (Ⅲ)g(x)=2lnx-x2-kx,. 假设结论成立,则有: ①-②,得. ∴. 由④得, ∴ 即,即.⑤ 令,(0<t<1), 则>0. ∴u(t)在0<t<1上增函数, ∴u(t)<u(1)=0, ∴⑤式不成立,与假设矛盾. ∴g'(x)≠0.
复制答案
考点分析:
相关试题推荐
已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(I)求数列{an}的通项公式;
(II)设数列{bn}满足manfen5.com 满分网,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
查看答案
某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如表:(单位:万美元)
年固定成本每件产品成本每件产品销售价每年最多可生产的件数
A产品20m10200
B产品40818120
其中年固定成本与年生产的件数无关,m是待定常数,其值由生产A产品的原材料决定,预计m∈[6,8],另外,年销售x件B产品时需上交0.05x2万美元的特别关税,假设生产出来的产品都能在当年销售出去.
(1)求该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系,并求出其定义域;
(2)如何投资才可获得最大年利润?请设计相关方案.
查看答案
(1)如图,D是Rt△ABC的斜边AB上的中点,E和F分别在边AC和BC上,且ED⊥FD,求证:EF2=AE2+BF2(EF2表示线段EF长度的平方)(尝试用向量法证明)
(2)已知函数f(x)=x3-3x图象上一点P(1,-2),过点P作直线l与y=f(x)图象相切,但切点异于点P,求直线l的方程.

manfen5.com 满分网 查看答案
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网,求a+c的值;
(2)求manfen5.com 满分网+manfen5.com 满分网的值.
查看答案
若集合manfen5.com 满分网,B={x|x2-12x+20<0},C={x|x<a}
求:(1)A∪B;
(2)(CRA)∩B;
(3)若A∩C≠Φ,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.