满分5 > 高中数学试题 >

若集合A={y|y=lgx},B={x|y=},则A∩B为( ) A.[0,1]...

若集合A={y|y=lgx},B={x|y=manfen5.com 满分网},则A∩B为( )
A.[0,1]
B.(0,1]
C.[0,∞)
D.(-∞,1]
由A={y|y=lgx}={y|y∈R},B={x|y=}={x|1-x≥0}={x|x≤1},能求出A∩B. 【解析】 ∵A={y|y=lgx}={y|y∈R}, B={x|y=}={x|1-x≥0}={x|x≤1}, ∴A∩B={x|x≤1}=(-∞,1]. 故选D.
复制答案
考点分析:
相关试题推荐
已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
(文)设数列{an}的通项公式为amanfen5.com 满分网.数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=manfen5.com 满分网,求b3
(Ⅱ)(文)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)(文)若manfen5.com 满分网,是否存在q,使得bmanfen5.com 满分网?如果存在,求q的取值范围;如果不存在,请说明理由.
查看答案
设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若manfen5.com 满分网,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.
查看答案
(文)(1)已知函数f(x)=x2+mx+3,当x∈[-2,2]时,f(x)≥m恒成立,求实数m的取值范围.
(2)已知函数f(x)=x2+mx+3,当至少有一个x∈[-2,2]时,使f(x)≥m成立,求实数m的取值范围.
查看答案
(理)(1)已知集合manfen5.com 满分网,函数manfen5.com 满分网的定义域为Q,若P⊆Q,求实数a的取值范围;
(2)已知集合manfen5.com 满分网,函数manfen5.com 满分网的定义域为Q,若P∩Q≠∅,求实数a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.