满分5 > 高中数学试题 >

设,g(x)=ax+5-2a(a>0). (1)求f(x)在x∈[0,1]上的值...

manfen5.com 满分网,g(x)=ax+5-2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立,求a的取值范围.
(1)求f(x)的值域问题可用导数法;注意到分母为x2,可分子分母同除以x2,将分母变为关于的二次函数解决; 还可以将分母换元,转化为用双钩函数求最值. (2)对于任意x1∈[0,1],f(x1)范围由(1)可知,由题意即g(x)的值域包含f(x)的值域,转化为集合的关系问题. 【解析】 (1)法一:(导数法)在x∈[0,1]上恒成立. ∴f(x)在[0,1]上增, ∴f(x)值域[0,1]. 法二:,用复合函数求值域. 法三: 用双勾函数求值域. (2)f(x)值域[0,1],g(x)=ax+5-2a(a>0)在x∈[0,1]上的值域[5-2a,5-a]. 由条件,只须[0,1]⊆[5-2a,5-a]. ∴⇒.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网在点(-1,f(-1))的切线方程为x+y+3=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.
查看答案
已知函数manfen5.com 满分网(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
查看答案
已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,且1<a<2,求函数f(x)的解析式.
查看答案
已知函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求实数k,a的值;
(2)若函数manfen5.com 满分网,试判断函数g(x)的奇偶性,并说明理由.
查看答案
设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(2-x)=f(x+2),且当x∈[-2,0]时,f(x)=(manfen5.com 满分网x-1,若关于x的方程f(x)-loga(x+2)=0(a>1)在区间(-2,6)内恰有三个不同实根,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.