满分5 > 高中数学试题 >

已知函数. (1)当时,如果函数g(x)=f(x)-k仅有一个零点,求实数k的取...

已知函数manfen5.com 满分网
(1)当manfen5.com 满分网时,如果函数g(x)=f(x)-k仅有一个零点,求实数k的取值范围;
(2)当a=2时,试比较f(x)与1的大小;
(3)求证:manfen5.com 满分网(n∈N*).
(1)利用函数f(x)的导数求出它的单调区间和极值,由题意知 k大于f(x)的极大值,或 k小于f(x)的极小值. (2)令h(x)=f(x)-1,由h′(x)>0得h(x)在(0,+∞)上是增函数,利用h(1)=0,分x>1、 0<x<1、当x=1三种情况进行讨论. (3)根据(2)的结论,当x>1时,,令,有,可得 ,由 ,证得结论. 【解析】 (1)当时,,定义域是(0,+∞),  求得,令f'(x)=0,得,或x=2. ∵当或x>2时,f'(x)>0; 当时,f'(x)<0, ∴函数f(x)在(0,]、(2,+∞)上单调递增,在上单调递减. ∴f(x)的极大值是 ,极小值是 . ∵当x趋于 0时,f(x)趋于-∞;当x趋于+∞时,f(x)趋于+∞, 由于当g(x)仅有一个零点时,函数f(x)的图象和直线y=k仅有一个交点, k的取值范围是{k|k>3-ln2,或}. (2)当a=2时,,定义域为(0,+∞). 令,∵, ∴h(x)在(0,+∞)上是增函数.  ①当x>1时,h(x)>h(1)=0,即f(x)>1; ②当0<x<1时,h(x)<h(1)=0,即f(x)<1;  ③当x=1时,h(x)=h(1)=0,即f(x)=1. (3)证明:根据(2)的结论,当x>1时,,即. 令,则有,∴. ∵,∴.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网,g(x)=ax+5-2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立,求a的取值范围.
查看答案
已知函数manfen5.com 满分网在点(-1,f(-1))的切线方程为x+y+3=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.
查看答案
已知函数manfen5.com 满分网(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
查看答案
已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,且1<a<2,求函数f(x)的解析式.
查看答案
已知函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求实数k,a的值;
(2)若函数manfen5.com 满分网,试判断函数g(x)的奇偶性,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.