(Ⅰ)由表格可看出a1,a2,a3分别是2,6,18,由此可求出{an}的首项和公比,继而可求通项公式
(Ⅱ)先写出bn发现bn由一个等比数列、一个等差数列乘(-1)n的和构成,故可分组求和.
【解析】
(Ⅰ)当a1=3时,不合题意
当a1=2时,当且仅当a2=6,a3=18时符合题意
当a1=10时,不合题意
因此a1=2,a2=6,a3=18,所以q=3,
所以an=2•3n-1.
(Ⅱ)bn=an+(-1)nlnan
=2•3n-1+(-1)n[(n-1)ln3+ln2]
=2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3
所以sn=2(1+3+…+3n-1)+[-1+1-1+1+…+(-1)n](ln2-ln3)+[-1+2-3+4-…+(-1)nn]ln3
所以当n为偶数时,sn==
当n为奇数时,sn==
综上所述sn=