满分5 > 高中数学试题 >

已知函数f(x)=x-alnx,. (Ⅰ)若a=1,求函数f(x)的极值; (Ⅱ...

已知函数f(x)=x-alnx,manfen5.com 满分网
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅲ)若在[1,e](e=2.718…)上存在一点x,使得f(x)<g(x)成立,求a的取值范围.
(Ⅰ)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间进而求出函数f(x)的极值; (Ⅱ)先求出函数h(x)的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间; (Ⅲ)先把f(x)<g(x)成立转化为h(x)<0,即函数在[1,e]上的最小值小于零;再结合(Ⅱ)的结论分情况讨论求出其最小值即可求出a的取值范围. 【解析】 (Ⅰ)f(x)的定义域为(0,+∞),(1分) 当a=1时,f(x)=x-lnx,,(2分) x (0,1) 1 (1,+∞) f'(x) - + f(x) 极小 (3分) 所以f(x)在x=1处取得极小值1.(4分) (Ⅱ), (6分) ①当a+1>0时,即a>-1时,在(0,1+a)上h'(x)<0,在(1+a,+∞)上h'(x)>0, 所以h(x)在(0,1+a)上单调递减,在(1+a,+∞)上单调递增;(7分) ②当1+a≤0,即a≤-1时,在(0,+∞)上h'(x)>0, 所以,函数h(x)在(0,+∞)上单调递增.(8分) ( III)在[1,e]上存在一点x,使得f(x)<g(x)成立,即 在[1,e]上存在一点x,使得h(x)<0, 即函数在[1,e]上的最小值小于零.(9分) 由(Ⅱ)可知 ①即1+a≥e,即a≥e-1时,h(x)在[1,e]上单调递减, 所以h(x)的最小值为h(e), 由可得, 因为, 所以;(10分) ②当1+a≤1,即a≤0时,h(x)在[1,e]上单调递增, 所以h(x)最小值为h(1),由h(1)=1+1+a<0可得a<-2;(11分) ③当1<1+a<e,即0<a<e-1时,可得h(x)最小值为h(1+a), 因为0<ln(1+a)<1, 所以,0<aln(1+a)<a 故h(1+a)=2+a-aln(1+a)>2 此时,h(1+a)<0不成立.(12分) 综上讨论可得所求a的范围是:或a<-2.(13分)
复制答案
考点分析:
相关试题推荐
等比数列{an}中.a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1•a2•a3中的任何两个数不在下表的同一列.
第一列第二列第三列
第一行3210
第二行6414
第三行9818
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)如数列{bn}满足bn=an+(-1)nlnan,求数列bn的前n项和sn
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且manfen5.com 满分网
(Ⅰ) 求角C的大小;
(Ⅱ) 若a+b=6,manfen5.com 满分网,求△ABC 的面积及c的值.
查看答案
已知函数f(x)=2sin2manfen5.com 满分网+x)-manfen5.com 满分网cos2x
(I)求f(x)的周期和单调递增区间
(II)若关于x的方程f(x)-m=2在x∈[manfen5.com 满分网manfen5.com 满分网]上有解,求实数m的取值范围.
查看答案
已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.
查看答案
在整数集Z中,称被5除所得的余数为k的所有整数组成一个“k类”,记为[k],即[k]={x|x=5n+k,n∈Z},k=0,1,2,3,4.现给出如下四个结论:
①2011∈[1];
②-4∈[4];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④设a,b∈Z,则a,b∈[k]⇔a-b∈[0].
其中,正确结论的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.