满分5 > 高中数学试题 >

记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10. (1)求数...

记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.
(1)求数列{an}的通项公式;
(2)令bn=an•2n(n∈N*),求数列{bn}的前n项和Tn
(1):利用待定系数法,设首项和公差,由a2+a4=6,S4=10,列方程组,可得数列首项和公差,从而得解. (2):由an=n,bn=an•2n=n•2n可知,要求{bn}的前n项和,可利用错位相减的方法求得.(一个等差数列和一个等比数列对应项之积组成的数列,可用错位相减法求和) 【解析】 (Ⅰ)设等差数列{an}的公差为d,由a2+a4=6,S4=10, 可得,(2分), 即, 解得,(4分) ∴an=a1+(n-1)d=1+(n-1)=n, 故所求等差数列{an}的通项公式为an=n.(5分) (Ⅱ)依题意,bn=an•2n=n•2n, ∴Tn=b1+b2++bn=1×2+2×22+3×23++(n-1)•2n-1+n•2n,(7分) 又2Tn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1,(9分) 两式相减得-Tn=(2+22+23++2n-1+2n)-n•2n+1(11分)==(1-n)•2n+1-2,(12分) ∴Tn=(n-1)•2n+1+2.(13分)
复制答案
考点分析:
相关试题推荐
一种放射性元素,最初的质量为500g,按每年10%衰减.
(Ⅰ)求t年后,这种放射性元素质量ω的表达式;
(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:lg3=0.4771;lg5=0.6990)
查看答案
已知一条曲线上的点到定点O(0,0)的距离是到定点A(3,0)距离的二倍,求这条曲线的方程.
查看答案
在集合{a,b,c,d}上定义两种运算⊕和⊗(如下图),则d⊗(a⊕c)=   
abcd
 aaaaa
babcd
cacca
dadad
abcd
aabcd
bbbbb
ccbcb
ddbbd
查看答案
设函数y=x2-4x+3,x∈[-1,4],则f(x)的最大值为    查看答案
某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.