满分5 > 高中数学试题 >

选修4-1:几何证明选讲 如图,PA切圆O于点A,割线PBC经过圆心O,OB=P...

选修4-1:几何证明选讲
如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转60° 到OD.
(1)求线段PD的长;
(2)在如图所示的图形中是否有长度为manfen5.com 满分网的线段?若有,指出该线段;若没有,说明理由.

manfen5.com 满分网
(1)由PA与圆O相切,根据切线性质得到OA与AP垂直,所以三角形OPA为直角三角形,又B为斜边PO的中点,根据直角三角形斜边上的中线等于斜边的一半,得到AB=OB=OA,故三角形AOB为等边三角形,得到∠AOB=60°,由旋转角也为60°得到∠POD=120°,由OD及PO的长,利用余弦定理即可求出线段PD的长; (2)线段PA长度为,理由为:由PA为圆O的切线,PB为圆的割线,由切割线定理列出PA2=PB•PC,将PA和OB的长代入即可求出PA的长. 【解析】 (1)∵PA切圆O于点A,∴OA⊥AP,即∠OAP=90°, 又B为PO中点,∴AB=OB=OA. ∴∠AOB=60°,∴∠POD=120°, 在△POD中,由OP=OB+PB=2,OD=1根据余弦定理得: , 则PD=;(5分) (2)图形中有线段PA=,理由如下: ∵PA是切线,PB=BO=OC ∴PA2=PB•PC=1×3=3, ∴PA=.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,在x=1处取得极值为2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)在区间(m,2m+1)上为增函数,求实数m的取值范围;
(Ⅲ)若P(x,y)为manfen5.com 满分网图象上的任意一点,直线l与manfen5.com 满分网的图象相切于点P,求直线l的斜率的取值范围.
查看答案
已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为manfen5.com 满分网,且过点(manfen5.com 满分网,1).
(I)求椭圆C的方程;
(II)直线l分别切椭圆C与圆M:x2+y2=R2(其中3<R<5)于A、B两点,求|AB|的最大值.
查看答案
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,manfen5.com 满分网,点M在线段EC上.
(I)当点M为EC中点时,求证:BM∥平面ADEF;
(II)当平面BDM与平面ABF所成锐二面角的余弦值为manfen5.com 满分网时,求三棱锥M-BDE的体积.

manfen5.com 满分网 查看答案
数列{an}中,a1=1,当n≥2时,其前n项的和Sn满足Sn2=an(Sn-1).
(Ⅰ)证明:数列manfen5.com 满分网是等差数列;
(Ⅱ)设manfen5.com 满分网,数列{bn}的前n项和为Tn,求满足Tn≥6的最小正整数n.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)在△ABC中,已知A为锐角,f(A)=1,manfen5.com 满分网,求AC边的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.