满分5 > 高中数学试题 >

设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△O...

设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
A.y2=±4
B.y2=4
C.y2=±8
D.y2=8
先根据抛物线方程表示出F的坐标,进而根据点斜式表示出直线l的方程,求得A的坐标,进而利用三角形面积公式表示出三角形的面积建立等式取得a,则抛物线的方程可得. 【解析】 抛物线y2=ax(a≠0)的焦点F坐标为, 则直线l的方程为, 它与y轴的交点为A, 所以△OAF的面积为, 解得a=±8. 所以抛物线方程为y2=±8x, 故选C.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )
A.-1<a<2
B.-3<a<6
C.a<-3或a>6
D.a<-1或a>2
查看答案
如果执行下面的框图,运行结果为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.3
C.manfen5.com 满分网
D.4
查看答案
同时抛掷两个表面上标有数字的正方体,其中有两个面的数字是1,两个面的数字是2,两个面上的数字是4,则朝上的点数之积为4的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )
A.a=1,b=1
B.a=-1,b=1
C.a=1,b=-1
D.a=-1,b=-1
查看答案
在空间四边形ABCD中,AD=BC=2a,E、F分别是AB、CD的中点,manfen5.com 满分网,则异面直线AD与BC所成的角为( )
A.30°
B.45°
C.60°
D.90°
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.