满分5 > 高中数学试题 >

若不等式|a-1|≥x+2y+2z对满足x2+y2+z2=1的一切实数x、y、z...

若不等式|a-1|≥x+2y+2z对满足x2+y2+z2=1的一切实数x、y、z恒成立,求a的取值范围.
不等式|a-1|≥x+2y+2z恒成立,只要|a-1|≥(x+2y+2z)max,利用柯西不等式9=(12+22+22)•(x2+y2+z2)≥(1•x+2•y+2•z)2求出x+2y+2z的最大值,再解关于a的绝对值不等式即可. 【解析】 由柯西不等式9=(12+22+22)•(x2+y2+z2)≥(1•x+2•y+2•z)2 即x+2y+2z≤3,当且仅当 且x2+y2+z2=1取等号, 即 x=,y=,z=时,x+2y+2z取得最大值3. ∵不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x,y,z恒成立, 只需|a-1|≥3,解得a-1≥3或a-1≤-3, ∴a≥4或a≤-2. 即实数的取值范围是(-∞,-2]∪[4,+∞).
复制答案
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点,沿x轴的正半轴为极轴建立极坐标系.曲线C的极坐标方程是ρ=4cosθ,直线l的参数方程是manfen5.com 满分网(t为参数),M、N分别为曲线C、直线l上的动点,求|MN|的最小值.
查看答案
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
查看答案
已知函数f(x)=x3-manfen5.com 满分网x2+bx+c.
(1)若f(x)在(-∞,+∞)是增函数,求b的取值范围;
(2)若f(x)在x=1时取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求 c的取值范围.
查看答案
f(x)是定义在[-2,2]上的偶函数,且f(x)在[0,2]上单调递减,若f(1-m)<f(m)成立,求实数m的取值范围.
查看答案
已知函数f(x)在(0,+∞)上满足f(xy)=f(x)+f(y),且f(x)在定义域内是减函数.
(1)求f(1)的值;
(2)若f(2a-3)<0,试确定a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.