满分5 > 高中数学试题 >

已知函数f(x)=alnx-ax-3(a∈R) (1)求f(x)的单调区间; (...

已知函数f(x)=alnx-ax-3(a∈R)
(1)求f(x)的单调区间;
(2)若函数f(x)的图象在点(2,f)处切线的倾斜角为45°,且对于任意的t∈[1,2],函数manfen5.com 满分网在区间(t,3)上总不为单调函数,求m的取值范围.
(1)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间. (2)对函数求导,求出函数的单调区间,根据函数的单调区间得到若f(x)在[1,2]上不单调,只要极值点出现在这个区间就可以,得到对于任意的t∈[1,2],g′(t)<0恒成立,从而求m的取值范围. 【解析】 (1), a>0时,f(x)在(0,1]上单调递增,在[1,+∞)单调递减; a<0时,f(x)在(0,1]上单调递减,在[1,+∞)单调递增; a=0时,f(x)不是单调函数. (2)由f′(2)=1得a=-2,所以f(x)=-2lnx+2x-3,则, 故g′(x)=3x2+(m+4)x-2 因为g(x)在(t,3)上总不是单调函数,且g′(0)=-2, ∴. 由题意知:对于任意的t∈[1,2],g′(t)<0恒成立, 综上,. m的取值范围为:.
复制答案
考点分析:
相关试题推荐
如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)当x∈[2,4]时.求该函数的值域;
(2)若f(x)≥mlog2x对于x∈[4,16]恒成立,求m的取值范围.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期及单调增区间;
(2)在△ABC中,A、B、C所对的边分别为a,b,c,若manfen5.com 满分网,f(A)=1,求b+c的最大值.
查看答案
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,manfen5.com 满分网
(Ⅰ)求an与bn
(Ⅱ)设cn=an•bn,求数列{cn}的前n项和Tn
查看答案
已知manfen5.com 满分网,q:1-m≤x≤1+m,若非P是非q的必要不充分条件,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.