满分5 > 高中数学试题 >

某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:...

manfen5.com 满分网某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示,
(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
(1)利用频率分布直方图中的频率=纵坐标×组据,求出第三、四、五组的频率; (2)利用频数=频率×样本容量求出各组的人数;求出各组人数与样本容量的比,再乘以6求出各组抽出的人数. (3)通过列举法得到从6名学生中抽2名所有的结果及第四组至少有一名学生被甲考官面试的结果;利用古典概型概率公式求出概率. 【解析】 (1)由题设可知,第三组的频率为0.06×5=0.3 第四组的频率为0.04×5=0.2 第五组的频率为0.02×5=0. (2)第三组的人数为0.3×100=30 第四组的人数为0.2×100=20 第五组的人数为0.1×100=10 因为第三、四、五组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组抽到的人数分别为:第三组 第四组 第五组 所以第三、四、五组分别抽取3人,2人,1人. (3)设第三组的3位同学为A1,A2,A3,第四组的2位同学为B1,B2, 第五组的1位同学为C1 则从6位同学中抽2位同学有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2)(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1)共15种可能 其中第四组的2位同学B1,B2中至少1位同学入选有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2)(B1,B2),(B1,C1),(B2,C1)共9种可能 所以第四组至少有1位同学被甲考官面试的概率为
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.
(1)求四棱锥P-ABCD的体积;
(2)如果E是PA的中点,求证:PC∥平面BDE;
(3)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论.

manfen5.com 满分网 查看答案
已知数列{an}的首项a1=1,且满足manfen5.com 满分网
(I)设manfen5.com 满分网,求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(II)设manfen5.com 满分网,求数列{cn}的前n项和Sn
查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)在区间[0,manfen5.com 满分网]上的最大值和最小值;
(Ⅱ)若manfen5.com 满分网的值.
查看答案
设f(x)=x-4tanx+2,x∈[-1,1],则关于a的不等式f(a2-1)+f(1-a)>4的解集为    查看答案
已知向量manfen5.com 满分网,且manfen5.com 满分网,则manfen5.com 满分网的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.