满分5 > 高中数学试题 >

设集合 M={x|x2+x-6<0},N={x|1≤x≤3},则M∩N=( ) ...

设集合 M={x|x2+x-6<0},N={x|1≤x≤3},则M∩N=( )
A.[1,2)
B.[1,2]
C.(2,3]
D.[2,3]
根据已知角一元二次不等式可以求出集合M,将M,N化为区间的形式后,根据集合交集运算的定义,我们即可求出M∩N的结果. 【解析】 ∵M={x|x2+x-6<0}={x|-3<x<2}=(-3,2), N={x|1≤x≤3}=[1,3], ∴M∩N=[1,2) 故选A
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)求f(x)在[-1,e](e为自然对数的底数)上的最大值;
(Ⅱ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
查看答案
在平面直角坐标系中,已知点P(1,-1),过点P作抛物线T:y=x2的切线,其切点分别为M(x1,y1)、N(x2,y2)(其中x1<x2).
(Ⅰ)求x1与x2的值;
(Ⅱ)若以点P为圆心的圆E与直线MN相切,求圆E的面积;
(Ⅲ)过原点O(0,0)作圆E的两条互相垂直的弦AC,BD,求四边形ABCD面积的最大值.
查看答案
manfen5.com 满分网如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,manfen5.com 满分网,凸多面体ABCED的体积为manfen5.com 满分网,F为BC的中点.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面BCE.
查看答案
已知数列{an}的相邻两项an,an+1是关于x的方程manfen5.com 满分网的两实根,且a1=1.
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)求证:数列manfen5.com 满分网是等比数列,并求数列{an}的通项公式.
查看答案
已知manfen5.com 满分网
(Ⅰ)求tanα的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.