已知圆C
1的参数方程为
(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C
2的极坐标方程为
.
(I)将圆C
1的参数方程化为普通方程,将圆C
2的极坐标方程化为直角坐标方程;
(II)圆C
1、C
2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
考点分析:
相关试题推荐
如图所示,已知⊙O
1与⊙O
2相交于A、B两点,过点A作⊙O
1的切线交⊙O
2于点C,过点B作两圆的割线,分别交⊙O
1、⊙O
2于点D、E,DE与AC相交于点P.
(I)求证:AD∥EC;
(II)若AD是⊙O
2的切线,且PA=6,PC=2,BD=9,求AD的长.
查看答案
已知函数
在点(1,f(1))处的切线方程为x+y=2.
(I)求a,b的值;
(II)对函数f(x)定义域内的任一个实数x,
恒成立,求实数m的取值范围.
查看答案
已知椭圆E的焦点在x轴上,离心率为
,对称轴为坐标轴,且经过点
.
(I)求椭圆E的方程;
(II)直线y=kx-2与椭圆E相交于A、B两点,O为原点,在OA、OB上分别存在异于O点的点M、N,使得O在以MN为直径的圆外,求直线斜率k的取值范围.
查看答案
如图,如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)若PD与平面ABCD所成角为60°,且AD=2,AB=4,求点A到平面PED的距离.
查看答案
为了参加2012贵州省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出12人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:
班级 | 高三(7)班 | 高三(17)班 | 高二(31)班 | 高二(32)班 |
人数 | 12 | 6 | 9 | 9 |
(Ⅰ)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数;
(Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.
查看答案