满分5 > 高中数学试题 >

△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bco...

△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=manfen5.com 满分网a.
(Ⅰ)求manfen5.com 满分网
(Ⅱ)若c2=b2+manfen5.com 满分网a2,求B.
(Ⅰ)先由正弦定理把题设等式中边转化成角的正弦,化简整理求得sinB和sinA的关系式,进而求得a和b的关系. (Ⅱ)把题设等式代入余弦定理中求得cosB的表达式,把(Ⅰ)中a和b的关系代入求得cosB的值,进而求得B. 【解析】 (Ⅰ)由正弦定理得,sin2AsinB+sinBcos2A=sinA, 即sinB(sin2A+cos2A)=sinA ∴sinB=sinA,= (Ⅱ)由余弦定理和C2=b2+a2,得cosB= 由(Ⅰ)知b2=2a2,故c2=(2+)a2, 可得cos2B=,又cosB>0,故cosB= 所以B=45°
复制答案
考点分析:
相关试题推荐
等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{manfen5.com 满分网}的前n项和.
查看答案
已知函数f(x)=sin2ωx+manfen5.com 满分网sinωxsin(ωx+manfen5.com 满分网)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间[0,manfen5.com 满分网]上的取值范围.
查看答案
设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若manfen5.com 满分网对一切x∈R恒成立,则
manfen5.com 满分网
manfen5.com 满分网
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是manfen5.com 满分网
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.
以上结论正确的是    (写出所有正确结论的编号). 查看答案
已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为    查看答案
已知向量manfen5.com 满分网manfen5.com 满分网满足(manfen5.com 满分网+2manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网)=-6,且|manfen5.com 满分网|=1,|manfen5.com 满分网|=2,则manfen5.com 满分网manfen5.com 满分网的夹角为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.