集合C={f(x)|f(x)是在其定义域上的单调增函数或单调减函数},集合D={f(x)|f(x)在定义域内存在区间[a,b],使得f(x)在a,b上的值域是[ka,kb],k为常数}.
(1)当k=
时,判断函数f(x)=
是否属于集合C∩D?并说明理由.若是,则求出区间[a,b];
(2)当k=
0时,若函数f(x)=
+t∈C∩D,求实数t的取值范围;
(3)当k=1时,是否存在实数m,当a+b≤2时,使函数f(x)=x
2-2x+m∈D,若存在,求出m的范围,若不存在,说明理由.
考点分析:
相关试题推荐
已知f(x)=
,g(x)=
.
(1)当1≤x<2时,求g(x);
(2)当x∈R时,求g(x)的解析式,并画出其图象;
(3)求方程x
f[g(x)]=2g[f(x)]的解.
查看答案
已知函数f(x)=x+
有如下性质:如果常数a>0,那么该函数在(0,
]上是减函数,在[
,+∞)上是增函数.
(1)如果函数y=x+
(x>0)在(0,4]上是减函数,在[4,+∞)是增函数,求b的值;
(2)证明:函数f(x)=x+
(常数a>0)在(0,
]上是减函数;
(3)设常数c∈(1,9),求函数f(x)=x+
在x∈[1,3]上的最小值和最大值.
查看答案
定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为f(x)=-2
2x+a2
x (a∈R).
(1)求f(x)在[-1,0]上的解析式;
(2)求f(x)在[0,1]上的最大值h(a).
查看答案
已知函数y=
的定义域为集合A,B={x|2<x<9}.
(1)分别求:∁
R(A∩B),(∁
RB)∪A;
(2)已知C={x|a<x<a+3},若C⊆B,求实数a的取值范围.
查看答案
设函数
,若用m表示不超过实数m的最大整数,则函数[
]+[
]的值域为
.
查看答案