为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.
(1)设月用电x度时,应交电费y元,写出y关于x的函数关系式;
(2)小明家第一季度缴纳电费情况如下:问小明家第一季度共用电多少度?
月份 | 一月 | 二月 | 三月 | 合计 |
交费金额 | 76元 | 63元 | 45.6元 | 184.6元 |
考点分析:
相关试题推荐
已知函数f(x)=x
2+2ax+2,x∈[-5,5],
(1)当a=-1时,求函数的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调减函数.
查看答案
已知函数
(1)求证函数f(x)在(2,4)上为增函数;
(2)求函数f(x)在[2,4]上的最大值和最小值,并求出值域.
查看答案
已知函数
,判断函数f(x)的奇偶性.
查看答案
已知A={x|3≤x<7},(B={x|2<x<10},C={x|x<a},全集为实数集R.
(1)求A∪B,(∁
RA)∩B;
(2)如果A∩C≠∅,求a的取值范围.
查看答案
设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是
.
查看答案