满分5 > 高中数学试题 >

已知定义在R上的函数f(x)对任意实数x,y都满足f(x+y)=f(x)+f(y...

已知定义在R上的函数f(x)对任意实数x,y都满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0
(1)判断函数f(x)的奇偶性,并证明
(2)解不等式f(a-4)+f(2a+1)<0.
(1)赋值法:根据所给恒等式,令x=y=0可得f(0)=0,令y=-x,可得f(-x)与f(x)的关系,据奇偶函数的定义即可判断; (2)先用单调性的定义判断函数的单调性,由奇偶性、单调性的性质可把把不等式中的符号“f”去掉,从而变为具体不等式; 【解析】 (1)函数f(x)为R上的奇函数,下面证明: 令y=x=0,由f(x+y)=f(x)+f(y),得f(0)=f(0)+f(0),所以f(0)=0, 令y=-x,由f(x+y)=f(x)+f(y),得f(0)=f(x)+f(-x),即0=f(x)+f(-x), 所以f(-x)=-f(x), 又f(x)定义域为R,关于原点对称, 所以f(x)为奇函数; (2)任取x1,x2,且x1<x2, 则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1), 因为x>0时,f(x)>0,且x2-x1>0, 所以f(x2-x1)>0,即f(x2)-f(x1)>0,f(x2)>f(x1), 所以f(x)为R上的增函数, f(a-4)+f(2a+1)<0⇒f(2a+1)<-f(a-4)=f(4-a), 由f(x)为增函数得,2a+1<4-a,解得a<1. 所以不等式的解集为{a|a<1}.
复制答案
考点分析:
相关试题推荐
已知函数f(x)是定义域为(-1,1)上的奇函数也是减函数
(1)若x∈(-1,0)时,f(x)=-x+1,求f(x);
(2)若f(1-a)<f(a2-1),求a的取值范围.
查看答案
为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.
(1)设月用电x度时,应交电费y元,写出y关于x的函数关系式;
(2)小明家第一季度缴纳电费情况如下:问小明家第一季度共用电多少度?
月份一月二月三月合计
交费金额76元63元45.6元184.6元

查看答案
已知函数f(x)=x2+2ax+2,x∈[-5,5],
(1)当a=-1时,求函数的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调减函数.
查看答案
已知函数manfen5.com 满分网
(1)求证函数f(x)在(2,4)上为增函数;
(2)求函数f(x)在[2,4]上的最大值和最小值,并求出值域.
查看答案
已知函数manfen5.com 满分网,判断函数f(x)的奇偶性.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.