满分5 > 高中数学试题 >

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为...

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点manfen5.com 满分网为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线y=x对称.
(1)求双曲线C的方程;
(2)设直线y=mx+1与双曲线C的左支交于A,B两点,另一直线l经过M(-2,0)及AB的中点,求直线l在y轴上的截距b的取值范围.
(1)根据两条渐近线与圆相切,可得双曲线C的两条渐近线方程为y=±x.利用双曲线C的一个焦点为,可得a2=1,从而可求双曲线C的方程. (2)直线与双曲线方程联立消去y,设A(x1,y1)、B(x2,y2),进而根据直线与双曲线左支交于两点,等价于方程f(x)=0在(-∞,0)上有两个不等实根求得m的范围,表示出AB中点的坐标,进而表示出直线l的方程,令x=0求得b关于k的表达式,根据m的范围求得b的范围. 【解析】 (1)设双曲线C的渐近线方程为y=kx,则kx-y=0 ∵该直线与圆相切,∴双曲线C的两条渐近线方程为y=±x.故设双曲线C的方程为. 又双曲线C的一个焦点为,∴2a2=2,a2=1. ∴双曲线C的方程为:x2-y2=1. (2)由得(1-m2)x2-2mx-2=0.令f(x)=(1-m2)x2-2mx-2 ∵直线与双曲线左支交于两点,等价于方程f(x)=0在(-∞,0)上有两个不等实根. 因此,解得.又AB中点为, ∴直线l的方程为:.令x=0,得. ∵,∴, ∴.
复制答案
考点分析:
相关试题推荐
如图,已知圆C1的方程为manfen5.com 满分网,椭圆C2的方程为manfen5.com 满分网(a>b>0),C2的离心率为manfen5.com 满分网,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.

manfen5.com 满分网 查看答案
已知中心在原点,焦点在x轴上的椭圆的离心率为manfen5.com 满分网,F1,F2为其焦点,一直线过点F1与椭圆相交于A、B两点,且△F2AB的最大面积为manfen5.com 满分网,求椭圆的方程.
查看答案
如图椭圆manfen5.com 满分网的上顶点为A,左顶点为B,F为右焦点,过F作平行与AB的直线交椭圆于C、D两点.作平行四边形OCED,E恰在椭圆上.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若平行四边形OCED的面积为manfen5.com 满分网,求椭圆的方程.

manfen5.com 满分网 查看答案
设双曲线manfen5.com 满分网与直线l:x+y=1交于两个不同的点A,B,求双曲线C的离心率e的取值范围.
查看答案
设命题p:|4x-3|≤1,命题q:x2-(2a+1)x+a(a+1)≤0,若“¬p⇒¬q”为假命题,“¬q⇒¬p”为真命题,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.