满分5 > 高中数学试题 >

设函数f(x)= (1)令N(x)=(1+x)2-1+ln(1+x),判断并证明...

设函数f(x)=manfen5.com 满分网
(1)令N(x)=(1+x)2-1+ln(1+x),判断并证明N(x)在(-1,+∞)上的单调性,并求N(0);
(2)求f(x)在定义域上的最小值;
(3)是否存在实数m,n满足0≤m<n,使得f(x)在区间[m,n]上的值域也为[m,n]?
(参考公式:[ln(1+x)′]=manfen5.com 满分网
(1)先对函数求导,由导函数在x>-1时的符号判断函数的单调性,代入求N(0)的值, (2)直接求定义域,利用f(x)单调性求解函数f(x)的最小值、值域, (3)假设存在符合条件的m,n则有,推导可判断m,n是否存在. 【解析】 (1)当x>-1时,N′(x)=2x+2+>0(2分) 所以,N(x)在(-1,+∞)上是单调递增,N(0)=0(4分) (2)f(x)的定义域是(-1,+∞) 当-1<x<0时,N(x)<0,所以,f′(x)<0, 当x>0时,N(x)>0,所以,f′(x)>0,(8分) 所以,在(-1,0)上f(x)单调递减,在(0,+∞)上,f(x)单调递增, 所以,fmin=f(0)=0(10分) (3)由(2)知f(x)在[0,+∞)上是单调递增函数, 若存在m,n满足条件,则必有f(m)=m,f(n)=n,(11分) 也即方程f(x)=x在[0,+∞)上有两个不等的实根m,n, 但方程f(x)=x,即=0只有一个实根x=0, 所以,不存在满足条件的实数m,n.(14分)
复制答案
考点分析:
相关试题推荐
设F1,F2分别为椭圆manfen5.com 满分网的左、右两个焦点,若椭圆C上的点A(1,manfen5.com 满分网)到F1,F2两点的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标;
(2)过点P(1,manfen5.com 满分网)的直线与椭圆交于两点D、E,若DP=PE,求直线DE的方程;
(3)过点Q(1,0)的直线与椭圆交于两点M、N,若△OMN面积取得最大,求直线MN的方程.
查看答案
如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=AC=1,BC=manfen5.com 满分网,CD⊥AB,垂足为D.
(1)求证:BC∥平面AB1C1
(2)求点B1到面A1CD的距离.

manfen5.com 满分网 查看答案
已知等差数列{an}中,首项a1>0,公差d>0.
(1)若a1=1,d=2,且manfen5.com 满分网成等比数列,求整数m的值;
(2)求证:对任意正整数n,manfen5.com 满分网都不成等差数列.
查看答案
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数f(x)=x2+ξ•x为R上的偶函数”为事件A,求事件A的概率;
(2)求ξ的分布列和数学期望.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,已知manfen5.com 满分网
(1)当c=1,且△ABC的面积为manfen5.com 满分网的值;
(2)当manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.