满分5 > 高中数学试题 >

在△ABC中,角A、B、C所对的边分别为a、b、c,=(2a,1),=(2b-c...

在△ABC中,角A、B、C所对的边分别为a、b、c,manfen5.com 满分网=(2a,1),manfen5.com 满分网=(2b-c,cosC)且manfen5.com 满分网manfen5.com 满分网
求:
(I)求sinA的值;
(II)求三角函数式manfen5.com 满分网的取值范围.
(I)根据向量平行的充要条件列式:2b-c=2acosC,结合正弦定理与两角和的正弦公式,化简可得2cosAsinC=sinC,最后用正弦的诱导公式化简整理,可得cosA=,从而得到sinA的值; (II)将三角函数式用二倍角的余弦公式结合“切化弦”,化简整理得sin(2C-),再根据A=算出C的范围,得到sin(2C-)的取值范围,最终得到原三角函数式的取值范围. 【解析】 (I)∵∥,∴2acosC=1×(2b-c), 根据正弦定理,得2sinAcosC=2sinB-sinC, 又∵sinB=sin(A+C)=sinAcosC+cosAsinC, ∴2cosAsinC-sinC=0,即sinC(2cosA-1)=0 ∵C是三角形内角,sinC≠0 ∴2cosA-1=0,可得cosA= ∵A是三角形内角, ∴A=,得sinA=            …(5分) (II)==2cosC(sinC-cosC)+1=sin2C-cos2C, ∴=sin(2C-), ∵A=,得C∈(0,), ∴2C-∈(-,),可得-<sin(2C-)≤1, ∴-1<sin(2C-), 即三角函数式的取值范围是(-1,].     …(11分)
复制答案
考点分析:
相关试题推荐
(1)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过点C作圆的切线l,过点A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为   
(2)在平面直角坐标系下,曲线C1manfen5.com 满分网(t为参数),曲线C2manfen5.com 满分网(θ为参数),若曲线C1、C2有公共点,则实数a的取值范围为   
manfen5.com 满分网 查看答案
设二次函数f(x)=ax2-4x+c(x∈R)的值域为[0,+∞),则manfen5.com 满分网的最大值为    查看答案
已知点P(x,y)满足manfen5.com 满分网,过点P的直线l与圆C:x2+y2=14相交于A、B两点,则AB的最小值为    查看答案
若某几何体的三视图 (单位:cm) 如图所示,则此几何体的表面积是    cm2
manfen5.com 满分网 查看答案
已知把向量manfen5.com 满分网﹦(1,1)向右平移两个单位,再向下平移一个单位得到向量manfen5.com 满分网,则manfen5.com 满分网的坐标为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.