(Ⅰ)根据数列是一个各项均为正数的数列{an}满足an+12-an+1an-2an2=0,把这个式子分解,变为两个因式乘积的形式,(an+1+an)(an+1-2an)=0,注意数列是一个正项数列,得到an+1-2an=0,得到数列是一个等比数列,写出通项.
(Ⅱ)本题构造了一个新数列,要求新数列的和,注意观察数列是有一个等差数列和一个等比数列乘积组成,需要用错位相减来求和,两边同乘以2,得到结果后观察Sn+n•2n+1>50成立的正整数n的最小值.
【解析】
(Ⅰ)∵an+12-an+1an-2an2=0,∴(an+1+an)(an+1-2an)=0,
∵数列{an}的各项均为正数,
∴an+1+an>0,
∴an+1-2an=0,
即an+1=2an,所以数列{an}是以2为公比的等比数列.
∵a3+2是a2,a4的等差中项,
∴a2+a4=2a3+4,
∴2a1+8a1=8a1+4,
∴a1=2,
∴数列{an}的通项公式an=2n.
(Ⅱ)由(Ⅰ)及bn=得,bn=-n•2n,
∵Sn=b1+b2++bn,
∴Sn=-2-2•22-3•23-4•24--n•2n①
∴2Sn=-22-2•23-3•24-4•25--(n-1)•2n-n•2n+1②
①-②得,Sn=2+22+23+24+25++2n-n•2n+1
=,
要使Sn+n•2n+1>50成立,只需2n+1-2>50成立,即2n+1>52,
∴使Sn+n•2n+1>50成立的正整数n的最小值为5.