满分5 > 高中数学试题 >

设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=s...

设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.
(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小; (Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长. 【解析】 (Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC ∴2sinBcosA=sin(A+C) ∵A+C=π-B ∴sin(A+C)=sinB>0 ∴2sinBcosA=sinB ∴cosA= ∵A∈(0,π) ∴A=; (Ⅱ)∵b=2,c=1,A= ∴a2=b2+c2-2bccosA=3 ∴b2=a2+c2 ∴B= ∵D为BC的中点, ∴AD=.
复制答案
考点分析:
相关试题推荐
设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的值域.
查看答案
对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x∈D,使得当x∈D且x>x时,总有manfen5.com 满分网,则称直线l:y=kx+b为曲线y=f(x)和y=g(x)的“分渐近线”.给出定义域均为D={x|x>1}的四组函数如下:
①f(x)=x2,g(x)=manfen5.com 满分网; 
②f(x)10-x+2,g(x)=manfen5.com 满分网
③f(x)=manfen5.com 满分网,g(x)=manfen5.com 满分网;  
④f(x)=manfen5.com 满分网,g(x)=2(x-1-e-x
其中,曲线y=f(x)和y=g(x)存在“分渐近线”的是    查看答案
如图放置的边长为1的正方形ABCD的顶点A、D分别在x轴、y轴正半轴上(含原点)上滑动,则manfen5.com 满分网的最大值是   
manfen5.com 满分网 查看答案
函数manfen5.com 满分网的图象与x轴所围成的封闭图形的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.