满分5 > 高中数学试题 >

设f(x)=lnx,g(x)=f(x)+f′(x). (Ⅰ)求g(x)的单调区间...

设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与manfen5.com 满分网的大小关系;
(Ⅲ)求a的取值范围,使得g(a)-g(x)<manfen5.com 满分网对任意x>0成立.
(I)求导,并判断导数的符号确定函数的单调区间和极值、最值,即可求得结果; (Ⅱ)通过函数的导数,利用函数的单调性,半径两个函数的大小关系即可. (Ⅲ)利用(Ⅰ)的结论,转化不等式,求解即可. 【解析】 (Ⅰ)由题设知f(x)=lnx,g(x)=lnx+, ∴g'(x)=,令g′(x)=0得x=1, 当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调减区间. 当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调递增区间, 因此,x=1是g(x)的唯一值点,且为极小值点, 从而是最小值点,所以最小值为g(1)=1. (II) 设,则h'(x)=-, 当x=1时,h(1)=0,即, 当x∈(0,1)∪(1,+∞)时,h′(1)=0, 因此,h(x)在(0,+∞)内单调递减, 当0<x<1时,h(x)>h(1)=0,即, 当x>1时,h(x)<h(1)=0,即. (III)由(I)知g(x)的最小值为1, 所以,g(a)-g(x)<,对任意x>0,成立⇔g(a)-1<, 即Ina<1,从而得0<a<e.
复制答案
考点分析:
相关试题推荐
设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.
查看答案
设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的值域.
查看答案
对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x∈D,使得当x∈D且x>x时,总有manfen5.com 满分网,则称直线l:y=kx+b为曲线y=f(x)和y=g(x)的“分渐近线”.给出定义域均为D={x|x>1}的四组函数如下:
①f(x)=x2,g(x)=manfen5.com 满分网; 
②f(x)10-x+2,g(x)=manfen5.com 满分网
③f(x)=manfen5.com 满分网,g(x)=manfen5.com 满分网;  
④f(x)=manfen5.com 满分网,g(x)=2(x-1-e-x
其中,曲线y=f(x)和y=g(x)存在“分渐近线”的是    查看答案
如图放置的边长为1的正方形ABCD的顶点A、D分别在x轴、y轴正半轴上(含原点)上滑动,则manfen5.com 满分网的最大值是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.