满分5 > 高中数学试题 >

在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横...

在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的manfen5.com 满分网倍后得到点Q(x,manfen5.com 满分网y),且满足manfen5.com 满分网manfen5.com 满分网=1.
(Ⅰ)求动点P所在曲线C的方程;
(Ⅱ)过点B作斜率为-manfen5.com 满分网的直线l交曲线C于M、N两点,且manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网,试求△MNH的面积.
(Ⅰ)设点P的坐标为(x,y),则点Q的坐标为(x,y),表示出=(x+1,y),=(x-1,y),利用•=1,即可求得动点P所在曲线C的方程; (Ⅱ)设出l:y=-(x-1),与椭圆联立方程组,消去y,得2x2-2x-1=0,利用++=,确定H的坐标,计算|MN|,及H到直线l的距离即可求出△MNH的面积. 【解析】 (Ⅰ)设点P的坐标为(x,y),则点Q的坐标为(x,y). 依据题意,有=(x+1,y),=(x-1,y).…(2分) ∵•=1, ∴x2-1+2y2=1. ∴动点P所在曲线C的方程是+y2=1 …(4分) (Ⅱ)因直线l过点B,且斜率为k=-,故有l:y=-(x-1)…(5分) 联立方程组,消去y,得2x2-2x-1=0.…(7分) 设M(x1,y1)、N(x2,y2),可得,于是.…(8分) 又++=,得=(-x1-x2,-y1-y2),即H(-1,-)…(10分) ∴|MN|=,…(12分) 又l:x+2y-=0,则H到直线l的距离为d= 故所求△MNH的面积为S=.…(14分)
复制答案
考点分析:
相关试题推荐
已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
查看答案
manfen5.com 满分网如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,manfen5.com 满分网
(Ⅰ)求证:OM∥平面ABD;
(Ⅱ)求证:平面ABC⊥平面MDO;
(Ⅲ)求三棱锥M-ABD的体积.
查看答案
某地为了建立幸福指标体系,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
(1)求研究小组的总人数;
相关人员数抽取人数
公务员32x
教师48y
自由职业者644
(2)若从研究小组的公务员和教师中随机选2人撰写研究报告,求其中恰好有1人来自公务员的概率.
查看答案
在△ABC中,设A、B、C的对边分别为a、b、c,向量manfen5.com 满分网=(cosA,sinA),manfen5.com 满分网=(manfen5.com 满分网),若|manfen5.com 满分网|=2.(1)求角A的大小;(2)若manfen5.com 满分网的面积.
查看答案
对于函数f(x)=-2cosx(x∈[0,π])与函数manfen5.com 满分网有下列命题:
①函数f(x)的图象关于manfen5.com 满分网对称;②函数g(x)有且只有一个零点;
③函数f(x)和函数g(x)图象上存在平行的切线;
④若函数f(x)在点P处的切线平行于函数g(x)在点Q处的切线,则直线PQ的斜率为manfen5.com 满分网.其中正确的命题是    .(将所有正确命题的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.