满分5 > 高中数学试题 >

直三棱柱ABC-A1B1C1中AB=AC=AA1=3a,BC=2a,D是BC的中...

直三棱柱ABC-A1B1C1中AB=AC=AA1=3a,BC=2a,D是BC的中点,F是C1C上一点,且CF=2a.
(1)求证:B1F⊥平面ADF;
(2)求平面ADF与平面AA1B1B所成锐二面角的余弦值.

manfen5.com 满分网
(1)以D为坐标原点,DA、DB、DD1分别为x、y、z轴建立空间直角坐标系(D1是C1B1的中点),建立空间直角坐标系,用坐标表示点与向量,证明且,即可证得B1F⊥平面ADF; (2)求得平面AA1B1B的一个法向量,利用cos<,>=,即可求得二面角的余弦值. (1)证明:以D为坐标原点,DA、DB、DD1分别为 x、y、z轴建立空间直角坐标系(D1是C1B1的中点),则A(2a,0,0),B(0,a,0),F(0,-a,2a),B1(0,a,3a),(4分) ,,, 由且,得B1F⊥DF,B1F⊥DA, ∵DF∩DA=D ∴B1F⊥平面ADF;(6分) (2)由(1)知,, 设平面AA1B1B的一个法向量为, 则且,可取,(8分) 由cos<,>==- 即所求二面角的余弦值是.(13分)
复制答案
考点分析:
相关试题推荐
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(II)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.

manfen5.com 满分网 查看答案
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-manfen5.com 满分网<φ<manfen5.com 满分网)一个周期的图象如图所示.
(1)求函数f(x)的表达式;
(2)若f(α)+f(α-manfen5.com 满分网)=manfen5.com 满分网,且α为△ABC的一个内角,求sinα+cosα的值.

manfen5.com 满分网 查看答案
如图,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,manfen5.com 满分网,∠OAP=30°,则CP=   
manfen5.com 满分网 查看答案
(坐标系与参数方程选做题) 在极坐标系中,圆C:ρ=6cosθ和直线l:3ρcosθ-4ρsinθ-4=0相交于A,B两点,则线段AB的长是    查看答案
已知函数f(x)=2x-1,g(x)=1-x2,构造函数F(x)定义如下:当|f(x)|≥g(x)时,F(x)=|f(x)|;当|f(x)|<g(x)时,F(x)=-g(x),那么F(x)的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.