满分5 > 高中数学试题 >

为了立一块广告牌,要制造一个三角形的支架,三角形支架形状如图,要求∠ACB=60...

为了立一块广告牌,要制造一个三角形的支架,三角形支架形状如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米为了广告牌稳固,要求AC的长度越短越好,求AC最短为多少米?且当AC最短时,BC长度为多少米?

manfen5.com 满分网
设BC的长度为x米,AC的长度为y米,依据题意可表示出AB的长度,然后代入到余弦定理中求得x和y的关系式,利用基本不等式求得y的最小值,并求得取等号时x的值. 【解析】 设BC的长度为x米,AC的长度为y米,则AB的长度 为(y-0.5)米在△ABC中,依余弦定理得:AB2=AC2+BC2-2AC•BCcos∠ACB 即(y-0.5)2=y2+x2-2yx×,化简,得y(x-1)=x2- ∵x>1, ∴x-1>0 因此y=, y=+2 当且仅当x-1=时,取“=”号, 即x=1+时,y有最小值2+ 答:AC最短为2+米,BC长度为1+米
复制答案
考点分析:
相关试题推荐
已知p:关于x的方程x2+2x+m-1=0没有实根,q:不等式4x2+4(m-2)x+1>0的解集为R,
(1)若¬q为假命题,求m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求m的取值范围.
查看答案
某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
产品A(件)产品B(件)
研制成本、搭载费用之和(万元)2030计划最大资金额300万元
产品重量(千克)105最大搭载重量110千克
预计收益(万元)8060
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
查看答案
等比数列{an}中,已知a1=2,a4=16
(I)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
在△ABC中,内角A,B,C的对边分别是a,b,c,其中∠A=60°,且2是b和c等比中项,
(1)求△ABC的面积S△ABC
(2)若manfen5.com 满分网是b和c的等差中项,求a的值.
查看答案
在△ABC中,内角A,B,C的对边分别是a,b,c,若manfen5.com 满分网,sinC=2manfen5.com 满分网sinB,则A角大小为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.