满分5 > 高中数学试题 >

已知等差数列{an}的前n项和为Sn,且S10=55,S20=210. (1)求...

已知等差数列{an}的前n项和为Sn,且S10=55,S20=210.
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,是否存在m、k(k>m≥2,k,m∈N*),使得b1、bm、bk成等比数列.若存在,求出所有符合条件的m、k的值;若不存在,请说明理由.
(1)设出其首项和公差,直接利用S10=55,S20=210求出首项和公差即可求数列{an}的通项公式; (2)先求出,再代入b1、bm、bk成等比数列对应的等量关系,求出m、k之间的关系式,再利用题中k>m≥2,k,m∈N*,即可求出对应的m、k的值. 【解析】 (1)设等差数列{an}的公差为d,则.(1分) 由已知,得(3分) 即解得(5分) 所以an=a1+(n-1)d=n(n∈N*).(6分) (2)假设存在m、k(k>m≥2,m,k∈N),使得b1、bm、bk成等比数列, 则bm2=b1bk.(7分) 因为,(8分) 所以. 所以.(9分) 整理,得.(10分) 因为k>0,所以-m2+2m+1>0.(11分) 解得.(12分) 因为m≥2,m∈N*, 所以m=2,此时k=8. 故存在m=2、k=8,使得b1、bm、bk成等比数列.(14分)
复制答案
考点分析:
相关试题推荐
动点P与点F(1,0)的距离和它到直线l:x=-1的距离相等,记点P的轨迹为曲线C1.圆C2的圆心T是曲线C1上的动点,圆C2与y轴交于M,N两点,且|MN|=4.
(1)求曲线C1的方程;
(2)设点A(a,0)(a>2),若点A到点T的最短距离为a-1,试判断直线l与圆C2的位置关系,并说明理由.
查看答案
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.
(1)求证:AB1∥平面BC1D;
(2) 求四棱锥B-AA1C1D的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据的茎叶图如图.
(1)根据样品数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对较稳定;
(2)若从乙车间6件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过2克的概率.
查看答案
已知函数f(x)=2sinxcosx+cos2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若θ为锐角,且manfen5.com 满分网,求tan2θ的值.
查看答案
将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中,两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q且p,q∈N*)是正整数n的最佳分解时,我们规定函数manfen5.com 满分网,例如manfen5.com 满分网.关于函数f(n)有下列叙述:①manfen5.com 满分网,②manfen5.com 满分网,③manfen5.com 满分网,④manfen5.com 满分网.其中正确的序号为    (填入所有正确的序号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.