满分5 > 高中数学试题 >

设函数. (Ⅰ)当时,求f(x)的最大值; (Ⅱ)令,(0<x≤3),其图象上任...

设函数manfen5.com 满分网
(Ⅰ)当manfen5.com 满分网时,求f(x)的最大值;
(Ⅱ)令manfen5.com 满分网,(0<x≤3),其图象上任意一点P(x,y)处切线的斜率k≤manfen5.com 满分网恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1,方程2mf(x)=x2有唯一实数解,求正数m的值.
(I)函数的定义域是(0,+∞),把代入函数解析式,求其导数,根据求解目标,这个导数在函数定义域内只有一个等于零的点,判断这唯一的极值点是极大值点即可; (II)即函数F(x)的导数在(0,3]小于或者等于恒成立,分离参数后转化为函数的最值; (III)研究函数是单调性得到函数的极值点,根据函数图象的变化趋势,判断何时方程2mf(x)=x2有唯一实数解,得到m所满足的方程,解方程求解m. 【解析】 (I)依题意,知f(x)的定义域为(0,+∞),当时,,(2′) 令f'(x)=0,解得x=1.(∵x>0) 因为g(x)=0有唯一解,所以g(x2)=0,当0<x<1时,f'(x)>0,此时f(x)单调递增; 当x>1时,f'(x)<0,此时f(x)单调递减. 所以f(x)的极大值为,此即为最大值…(4分) (II),x∈(0,3],则有≤,在x∈(0,3]上恒成立, 所以a≥,x∈(0,3], 当x=1时,取得最大值, 所以a≥…(8分) (III)因为方程2mf(x)=x2有唯一实数解,所以x2-2mlnx-2mx=0有唯一实数解, 设g(x)=x2-2mlnx-2mx,则. 令g'(x)=0,x2-mx-m=0.因为m>0,x>0, 所以(舍去),, 当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减, 当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增 当x=x2时,g'(x2)=0,g(x)取最小值g(x2).(12′) 则既 所以2mlnx2+mx2-m=0,因为m>0,所以2lnx2+x2-1=0(*) 设函数h(x)=2lnx+x-1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解. 因为h(1)=0,所以方程(*)的解为x2=1,即,解得.…(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.
查看答案
已知数列{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,S3=7,且a1+3,3a2,a3+4成等差数列.
(1)求数列{an}的通项;
(2)令bn=nan,求数列{bn}的前n项和Tn
查看答案
在△ABC中,角A、B、C的对边分别为a,b,c
(1)若manfen5.com 满分网,求A的值;
(2)若manfen5.com 满分网,求sinC的值.
查看答案
函数manfen5.com 满分网的图象与函数y=2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于    查看答案
已知函数f(x)=|x2-6|,若a<b<0,且f(a)=f(b),则a2+b2=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.