满分5 > 高中数学试题 >

如图,椭圆C:焦点在x轴上,左、右顶点分别为A1、A,上顶点为B,抛物线C1、C...

如图,椭圆C:manfen5.com 满分网焦点在x轴上,左、右顶点分别为A1、A,上顶点为B,抛物线C1、C2分别以A、B为焦点,其顶点均为坐标原点O.C1与C2相交于直线manfen5.com 满分网上一点P.
(Ⅰ)求椭圆C及抛物线C1、C2的方程;
(Ⅱ)若动直线l与直线OP垂直,且与椭圆C交于不同两点M、N,已知点manfen5.com 满分网,0),求manfen5.com 满分网的最小值.

manfen5.com 满分网
(Ⅰ)由题意知,A(a,0),,故抛物线C1的方程可设为y2=4ax,C2的方程为.由此能求出椭圆C:,抛物线C1:y2=16x,抛物线C2:. (Ⅱ)由直线OP的斜率为,知直线l的斜率为,设直线l方程为,由消去y,整理得,再由根的判别式和韦达定理进行求解. 【解析】 (Ⅰ)由题意知,A(a,0),故抛物线C1的方程可设为y2=4ax,C2的方程为 则,得a=4, 所以椭圆C:,抛物线C1y2=16x:,抛物线C2: (Ⅱ)由(Ⅰ)知,直线OP的斜率为,所以直线l的斜率为, 设直线l方程为 由消去y,整理得 因为直线l与椭圆C交于不同两点,所以△=128b2-20(8b2-16)>0, 解得 设M(x1,y1),N(x2,y2),则, 因为,, 所以= 因为,所以当时,取得最小值, 其最小值等于
复制答案
考点分析:
相关试题推荐
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N.
(I)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(I)的结论下,设bn=log3an+1,Tn是数列manfen5.com 满分网的前n项和,求T2012的值.
查看答案
manfen5.com 满分网如图,正三棱柱ABC-A1B1C1的所有棱长都相等,D为CC1的中点,AB1与A1B相交于点O,连接OD.
(1)求证:OD∥平面ABC;
(2)求证:AB1⊥平面A1BD.
查看答案
已知函数f(x)=manfen5.com 满分网
(Ⅰ) 求函数f(x)的最小值和最小正周期;
(Ⅱ)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量manfen5.com 满分网manfen5.com 满分网共线,求a,b的值.
查看答案
定义在R上的函数manfen5.com 满分网为奇函数.给出下列结论:①函数f(x)的最小正周期是manfen5.com 满分网;②函数f(x)的图象关于点(manfen5.com 满分网,0)对称;③函数f(x)的图象关于直线manfen5.com 满分网对称;④函数f(x)的最大值为manfen5.com 满分网.其中所有正确结论的序号是    查看答案
若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列manfen5.com 满分网为等差数列,且通项为manfen5.com 满分网.类似地,请完成下列命题:若各项均为正数的等比数列{bn}的首项为b1,公比为q,前n项的积为Tn,则    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.