登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设函数f(x)=|x-1|+|x-a|, (1)若a=-1,解不等式f(x)≥3...
设函数f(x)=|x-1|+|x-a|,
(1)若a=-1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范围.
(1)当a=-1,原不等式变为:|x-1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数-左侧的点与表示实数右侧的点与表示实数-1与1的点距离之和不小3,从而得到不等式解集. (2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a-1|≥2即可求得结果. 【解析】 (1)当a=-1时,f(x)=|x-1|+|x+1|,由f(x)≥3有|x-1|+|x+1|≥3 据绝对值几何意义求解,|x-1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,-1表示的点距离之和不小3, 由于数轴上数-左侧的点与数右侧的点与数-1与1的距离之和不小3, 所以所求不等式解集为(-∞,-]∪[,+∞) (2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(-∞,-1]∪[3,+∞)
复制答案
考点分析:
相关试题推荐
(1)求证:对任何实数k,x
2
+y
2
-2kx-(2k+6)y-2k-31=0恒过两定点,并求经过该两定点且面积最小的圆E的方程;
(2)若PA,PB为(1)中所求圆E的两条切线,A、B为切点,求
的最小值.
查看答案
设函数f(x)=ax
2
+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.
(Ⅰ)求a,b的值;
(Ⅱ)若函数
,讨论g(x)的单调性.
查看答案
杭州某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产.第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.
请你根据以上数据,解决下列问题:
(1)引进该设备多少年后,开始盈利?
(2)引进该设备若干年后,有两种处理方案:
第一种:年平均盈利达到最大值时,以26万元的价格卖出;
第二种:盈利总额达到最大值时,以8万元的价格卖出.
问哪种方案较为合算?并说明理由.
查看答案
等差数列{a
n
}是递增数列,前n项和为S
n
,且a
1
,a
3
,a
9
成等比数列,S
5
=a
5
2
.
(1)求数列{a
n
}的通项公式;
(2)若数列{b
n
}满足b
n
=
,求数列{b
n
}的前99项的和.
查看答案
已知
(1)当
时,求函数
的最小正周期;
(2)当
∥
,α-x,α+x都是锐角时,求cos2α的值.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.