满分5 > 高中数学试题 >

等比数列{an}的前n项和为Sn,若S2n=4(a1+a3+…+a2n-1),a...

等比数列{an}的前n项和为Sn,若S2n=4(a1+a3+…+a2n-1),a1a2a3=27,则a6=( )
A.27
B.81
C.243
D.729
利用等比数列的性质可得,a1a2a3=a23=27 从而可求a2,结合S2n=4(a1+a3+…+a2n-1) 考虑n=1可得,S2=a1+a2=4a1从而可得a1及公比 q,代入等比数列的通项公式可求a6 【解析】 利用等比数列的性质可得,a1a2a3=a23=27 即a2=3 因为S2n=4(a1+a3+…+a2n-1) 所以n=1时有,S2=a1+a2=4a1从而可得a1=1,q=3 所以,a6=1×35=243 故选C
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,manfen5.com 满分网)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象( )
A.向左平移manfen5.com 满分网个单位长度
B.向右平移manfen5.com 满分网个单位长度
C.向左平移manfen5.com 满分网个单位长度
D.向右平移manfen5.com 满分网个单位长度
查看答案
下列有关命题的说法中,正确的是( )
A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”
B.命题“若α>β,则tanα>tanβ”的逆否命题为真命题
C.命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,都有x2+x+1>0”
D.“x>1”是“x2+x-2>0”的充分不必要条件
查看答案
设集合A={x|y=manfen5.com 满分网},B={y|y=lgx,1≤x≤100},则A∩B=( )
A.[1,100]
B.[1,2]
C.[0,2]
D.[0,10)
查看答案
已知函数f(x)是定义在(-1,1)上的奇函数,并且在(-1,0]上是减函数.是否存在实数a使f(|1-a|)+f(1-a2)>0恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.
查看答案
我国是水资源比较贫乏的国家之一.目前,某市就节水问题,召开了市民听证会,并对水价进行激烈讨论,会后拟定方案如下:以户为单位,按月收缴,水价按照每户每月用水量分三级管理,第一级为每月用水量不超过12吨,每吨3.5元;第二级计量范围为超过12吨不超过18吨部分,第三级计量范围为超出18吨的部分,一、二、三级水价的单价按1:3:5计价.
(1)请写出每月水费y(元)与用水量x(吨)之间的函数关系;
(2)某户居民当月交纳水费为63元,该户当月用水多少吨?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.