函数y=f(x)的图象为折线ABC,其为偶函数,所研究x≥0时g(x)的图象即可,首先根据图象求出x≥0时f(x)的图象及其值域,再根据分段函数的性质进行求解,可以求出g(x)的解析式再进行判断;
【解析】
如图:函数y=f(x)的图象为折线ABC,函数f(x)为偶函数,
我们可以研究x≥0的情况即可,
若x≥0,可得B(0,1),C(1,-1),这直线BC的方程为:lBC:y=-2x+1,x∈[0,1],其中-1≤f(x)≤1;
若x<0,可得lAB:y=2x+1,∴f(x)=,
我们讨论x≥0的情况:如果0≤x≤,解得0≤f(x)≤1,此时g(x)=f[f(x)]=-2(-2x+1)=4x-1;
若<x≤1,解得-1≤f(x)<0,此时g(x)=f[f(x)]=2(-2x+1)=-4x+3;
∴x∈[0,1]时,g(x)=;
故选A;