满分5 > 高中数学试题 >

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O...

manfen5.com 满分网如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,manfen5.com 满分网,M是线段B1D1的中点.
(Ⅰ)求证:BM∥平面D1AC;
(Ⅱ)求证:D1O⊥平面AB1C;
(Ⅲ)求二面角B-AB1-C的大小.
(Ⅰ)连接D1O,通过证明D1O∥BM,去证BM∥平面D1AC. (Ⅱ通过证明 OB1⊥D1O.AC⊥D1O,由线面垂直的判定定理去证D1O⊥平面AB1C, (Ⅲ)在平面ABB1中过点B作BE⊥AB1于E,连接EC,证明∠BEC是二面角B-AB1-C的平面角,再再直角三角形BEC中求解. 【解析】 (Ⅰ)连接D1O,如图,∵O、M分别是BD、B1D1的中点,BD1D1B是矩形, ∴四边形D1OBM是平行四边形,∴D1O∥BM. ∵D1O⊂平面D1AC,BM⊄平面D1AC, ∴BM∥平面D1AC. (Ⅱ)连接OB1,∵正方形ABCD的边长为2,, ∴,OB1=2,D1O=2, 则OB12+D1O2=B1D12,∴OB1⊥D1O. ∵在长方体ABCD-A1B1C1D1中,AC⊥BD,AC⊥D1D, ∴AC⊥平面BDD1B1,又D1O⊂平面BDD1B1, ∴AC⊥D1O,又AC∩OB1=O, ∴D1O⊥平面AB1C. (Ⅲ)在平面ABB1中过点B作BE⊥AB1于E,连接EC, ∵CB⊥AB,CB⊥BB1, ∴CB⊥平面ABB1,又AB1⊂平面ABB1, ∴CB⊥AB1,又BE⊥AB1,且CB∩BE=B, ∴AB1⊥平面EBC,而EC⊂平面EBC, ∴AB1⊥EC. ∴∠BEC是二面角B-AB1-C的平面角. 在Rt△BEC中,,BC=2 ∴,∠BEC=60°, ∴二面角B-AB1-C的大小为60°.
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)设manfen5.com 满分网,则manfen5.com 满分网,求α的值.
查看答案
下列命题中,正确的是   
(1)平面向量manfen5.com 满分网manfen5.com 满分网的夹角为60°,manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网=manfen5.com 满分网
(2)若manfen5.com 满分网
(3)若命题p:“∃x∈R,x2-x-1>0”,则命题p的否定为“∀x∈R,x2-x-1≤0
(4)“a=1是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件. 查看答案
y=f(x)是定义在R上的偶函数且在[0,+∞)上递增,不等式manfen5.com 满分网的解集为    查看答案
已知定点A(3,4),点P为抛物线y2=4x上一动点,点P到直线x=-1的距离为d,则|PA|+d的最小值为    查看答案
有一个几何体的三视图及其尺寸(单位cm),则该几何体的表面积为:   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.