满分5 > 高中数学试题 >

已知A,B,C均在椭圆上,直线AB、AC分别过椭圆的左右焦点F1、F2,当时,有...

已知A,B,C均在椭圆manfen5.com 满分网上,直线AB、AC分别过椭圆的左右焦点F1、F2,当manfen5.com 满分网时,有manfen5.com 满分网
(Ⅰ)求椭圆M的方程;
(Ⅱ)设是椭圆M上的任一点,EF为圆N:x2+(y-2)2=1的任一条直径,求manfen5.com 满分网的最大值.
(Ⅰ)根据判断出可知△AF1F2为直角三角形,进而可知进而根据.求得,进而根据椭圆的定义联立求得根据勾股定理建立等式求得a,则椭圆的方程可得. (Ⅱ)根据题意通过E坐标求出F坐标,代入椭圆的方程,化简的表达式,利用P是椭圆上的任意一点纵坐标的范围求出表达式的最大值. 【解析】 (Ⅰ)因为,所以有 所以△AF1F2为直角三角形; ∴ 则有 所以, 又, ∴ 在△AF1F2中有 即,解得a2=2 所求椭圆M方程为 (Ⅱ)由题意可知N(0,2),E,F关于点N对称, 设E(x,y),则F(-x,4-y)有, ∴=x2-x2+4y-4y-y2+y2=x2+2y2-(x2+(y-2)2)-y2+4-4y=-(y+2)2+9 P是椭圆M上的任一点,y∈[-1,1], 所以当y=-1时,的最大值为8.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
查看答案
已知数列{an}的首项manfen5.com 满分网manfen5.com 满分网,n=1,2,3,….
(Ⅰ)证明:数列manfen5.com 满分网是等比数列;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
查看答案
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目新闻节目总计
20至40岁401050
大于40岁203050
总计6040100
(1)由表中数据检验,有没有99.9%把握认为收看文艺节目的观众与年龄有关?
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.manfen5.com 满分网
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
  k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c且满足manfen5.com 满分网
(I)求角C的大小;
(II)求函数manfen5.com 满分网manfen5.com 满分网的最大值,并求取得最大值时x的大小.
查看答案
过圆x2+y2=4内点manfen5.com 满分网作圆的两条互相垂直的弦AB和CD,则AB+CD的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.