满分5 > 高中数学试题 >

已知函数f(x)=ax-1-lnx(a∈R). (Ⅰ)讨论函数f(x)在定义域内...

已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(Ⅲ)当0<x<y<e2且x≠e时,试比较manfen5.com 满分网的大小.
(Ⅰ)函数f(x)的定义域为(0,+∞).f′(x)=a-.通过考察f′(x)的正负值区间判断单调区间,得出极值点情况. (Ⅱ)a=1,f(x)≥bx-2恒成立,即(1-b)x>lnx-1,将b分离得出,b<,令g(x)=,只需b小于等于g(x)的最小值即可.利用导数求最小值. (Ⅲ)由(Ⅱ)g(x)=在(0,e2)上为减函数,g(x)>g(y),>,整理得>,考虑将1-lnx除到右边,为此分1-lnx正负分类求解. 【解析】 函数f(x)的定义域为(0,+∞).f′(x)=a-. (Ⅰ)当a≤0时,f′(x)<0在(0,+∞)上恒成立,函数 在(0,+∞)单调递减, ∴在(0,+∞)上没有极值点; 当a>0时,由f′(x)>0得x>,f′(x)<0得x<.f′(x)=0得x=. ∴在(0,)上递减,在(,+∞)上递增,即在x=处有极小值. ∴当a≤0时在(0,+∞)上没有极值点, 当a>0时,在(0,+∞)上有一个极值点.(3分) (Ⅱ)∵函数在x=处取得极值,∴a=1, f(x)=x-1-lnx, ∵f(x)≥bx-2,移项得(1-b)x>lnx-1,再将b分离得出,b<,令g(x)=, 则令g′(x)=,可知在(0,e2)上g′(x)<0,在(e2,+∞)上g′(x)>0, ∴g(x)在x=e2处取得极小值,也就是最小值.此时g(e2)=1-, 所以b≤1-. (Ⅲ)由(Ⅱ)g(x)=在(0,e2)上为减函数.0<x<y<e2且x≠e时, 有g(x)>g(y),>,整理得>① 当0<x<e时,1-lnx>0,由①得, 当e<x<e2时,1-lnx<0,由①得
复制答案
考点分析:
相关试题推荐
已知A,B,C均在椭圆manfen5.com 满分网上,直线AB、AC分别过椭圆的左右焦点F1、F2,当manfen5.com 满分网时,有manfen5.com 满分网
(Ⅰ)求椭圆M的方程;
(Ⅱ)设是椭圆M上的任一点,EF为圆N:x2+(y-2)2=1的任一条直径,求manfen5.com 满分网的最大值.
查看答案
manfen5.com 满分网如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
查看答案
已知数列{an}的首项manfen5.com 满分网manfen5.com 满分网,n=1,2,3,….
(Ⅰ)证明:数列manfen5.com 满分网是等比数列;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
查看答案
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目新闻节目总计
20至40岁401050
大于40岁203050
总计6040100
(1)由表中数据检验,有没有99.9%把握认为收看文艺节目的观众与年龄有关?
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.manfen5.com 满分网
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
  k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c且满足manfen5.com 满分网
(I)求角C的大小;
(II)求函数manfen5.com 满分网manfen5.com 满分网的最大值,并求取得最大值时x的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.