本题是一道推理问题.通过通过动手作图得,每一项与它前面一项的差构成一个等差数列,再结合类似于等差数列求通项的方法即可求出通项f(n),从而解决问题.
【解析】
通过动手作图,可知f(3)=7,f(4)=11,f(5)=16,
从中可归纳推理,得出f(n)=f(n-1)+n,则f(n)-f(n-1)=n,
f(n-1)-f(n-2)=n-1,
f(n-2)-f(n-3)=n-2,
…
f(5)-f(4)=5,
f(4)-f(3)=4,
将以上各式累加得:
f(n)-f(3)=n+(n-1)+(n-2)+…+5+4=,
则有f(n)=+f(3)=+7
=.
故答案为16;.