满分5 > 高中数学试题 >

命题“存在x∈Z使x2+2x+m≤0”的否定是( ) A.存在x∈Z使x2+2x...

命题“存在x∈Z使x2+2x+m≤0”的否定是( )
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.对任意x∈Z使x2+2x+m≤0
D.对任意x∈Z使x2+2x+m>0
根据命题“存在x∈Z使x2+2x+m≤0”是特称命题,其否定命题是全称命题,将“存在”改为“任意的”,“≤“改为“>”可得答案. 【解析】 ∵命题“存在x∈Z使x2+2x+m≤0”是特称命题 ∴否定命题为:对任意x∈Z使x2+2x+m>0 故选D.
复制答案
考点分析:
相关试题推荐
命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
查看答案
设集合manfen5.com 满分网,N={x|x2-2x≥0,x∈Z},则M∩N=( )
A.{x|-2<x≤0}
B.{x|-2<x≤2}
C.{-1,0}
D.∅
查看答案
已知函数f(x)=loga(x+1),g(x)=loga(4-2x)(a>0,且a≠1).
(1)求函数f(x)-g(x)的定义域;
(2)求使函数f(x)-g(x)的值为正数的x的取值范围.
查看答案
已知函数f(x)=(2x-a)2+(2-x+a)2,x∈[-1,1].
(1)当a=1时,求使f(x)=manfen5.com 满分网的x的值;
(2)求f(x)的最小值;
(3)关于x的方程f(x)=2a2有解,求实数a的取值范围.
查看答案
已知集合是满足下列性质的函数f(x)的全体:在定义域D内存在x,使得f(x+1)=f(x)+f(1)成立.
(1)函数manfen5.com 满分网是否属于集合M?说明理由;
(2)若函数f(x)=kx+b属于集合M,试求实数k和b的取值范围;
(3)设函数manfen5.com 满分网属于集合M,求实数a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.