满分5 > 高中数学试题 >

如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点...

manfen5.com 满分网如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.
(1)要证DM∥平面APC,只需证明MD∥AP(因为AP⊂面APC)即可. (2)在平面ABC内直线AP⊥BC,BC⊥AC,即可证明BC⊥面APC,从而证得平面ABC⊥平面APC; (3)因为BC=4,AB=20,求出三棱锥的高,即可求三棱锥D-BCM的体积. 证明:(I)由已知得,MD是△ABP的中位线 ∴MD∥AP∵MD⊄面APC,AP⊂面APC ∴MD∥面APC;(4分) (II)∵△PMB为正三角形,D为PB的中点 ∴MD⊥PB,∴AP⊥PB又∵AP⊥PC,PB∩PC=P ∴AP⊥面PBC(6分)∵BC⊂面PBC∴AP⊥BC 又∵BC⊥AC,AC∩AP=A∴BC⊥面APC,(8分) ∵BC⊂面ABC∴平面ABC⊥平面APC;(10分) (III)由题意可知,MD⊥面PBC, ∴MD是三棱锥D-BCM的高, ∴.(14分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2x3-3ax2+1.
(1)若x=1为函数f(x)的一个极值点,试确定实数a的值,并求此时函数f(x)的极值;
(2)求函数f(x)的单调区间.
查看答案
对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.

manfen5.com 满分网 查看答案
在△ABC中,内角A,B,C的对边分别是a,b,c,若manfen5.com 满分网,sinC=2manfen5.com 满分网sinB,则A角大小为    查看答案
已知球O的表面积为20π,点A,B,C为球面上三点,若AC⊥BC,且AB=2,则球心O到平面ABC的距离等于    查看答案
设F1,F2分别是椭圆manfen5.com 满分网的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|的长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.