满分5 > 高中数学试题 >

已知函数f(x)=lnx,g(x)=(a>0),设F(x)=f(x)+g(x)....

已知函数f(x)=lnx,g(x)=manfen5.com 满分网(a>0),设F(x)=f(x)+g(x).
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以y=F(x)(x∈(0,3])图象上任意一点P(x,y)为切点的切线的斜率 kmanfen5.com 满分网恒成立,求实数a的最小值.
(Ⅲ)是否存在实数m,使得函数y=g(manfen5.com 满分网)+m-1的图象与y=f(1+x2)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.
(I)先求出F(x),然后求出F'(x),分别求出F′(x)>0与F′(x)<0 求出F(x)的单调区间; (II)利用导数的几何意义表示出切线的斜率k,根据恒成立将a分离出来,,即可求出a的范围,从而得到a的最小值; (III)p函数y=g()+m-1的图象与y=f(1+x2)的图象有四个不同的交点转化成方程有四个不同的根,分离出m后,转化成新函数的最大值和最小值. 【解析】 (I),. 因为a>0由F′(x)>0⇒x∈(a,+∞),所以F(x)在(a,+∞)上单调递增; 由F′(x)<0⇒x∈(0,a), 所以F(x)在(0,a)上单调递减. (Ⅱ)由题意可知对任意0<x≤3恒成立, 即有对任意0<x≤3恒成立,即, 令, 则,即实数a的最小值为. (III)若y=g()+m-1═的图象与y=f(1+x2)=ln(x2+1)的图象恰有四个不同交点, 即有四个不同的根, 亦即有四个不同的根. 令, 则. 当x变化时G'(x).G(x)的变化情况如下表: 由表格知:. 又因为可知,当时, 方程有四个不同的解. ∴的图象与 y=f(1+x2)=ln(x2+1)的图象恰有四个不同的交点.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.
查看答案
如图,等边△SAB与直角梯形ABCD垂直,AD⊥AB,BC⊥AB,AB=BC=2,AD=1.若E,F分别为AB,CD的中点.
(1)求|manfen5.com 满分网manfen5.com 满分网|的值; 
(2)求面SCD与面SAB所成的二面角大小.

manfen5.com 满分网 查看答案
已知函数f(x)=lnx-ax,g(x)=f(x)+f'(x),其中a是正实数.
(1)若当1≤x≤e时,函数f(x)有最大值-4,求函数f(x)的表达式;
(2)求a的取值范围,使得函数g(x)在区间(0,+∞)上是单调函数.
查看答案
如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.

manfen5.com 满分网 查看答案
抛物线顶点在原点,它的准线过双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(manfen5.com 满分网manfen5.com 满分网),求抛物线与双曲线方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.