满分5 > 高中数学试题 >

等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数...

等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=bx+r(b>0)且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记bn=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
(1)由“对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0,且b≠1,b,r均为常数)的图象上”可得到Sn=bn+r,依次求出a1、a2、a3,由等比数列的性质(a2)2=a1×a3,解可得答案. (2)结合(1)可知an=(b-1)bn-1=2n-1,从而bn=,符合一个等差数列与等比数列相应项之积的形式,用错位相减法求解即可. 【解析】 因为对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0,且b≠1,b,r均为常数)的图象上. 所以得Sn=bn+r, 当n=1时,a1=S1=b+r, a2=S2-S1=b2+r-(b1+r)=b2-b1=(b-1)b, a3=S3-S2=b3+r-(b2+r)=b3-b2=(b-1)b2, 又因为{an}为等比数列,所以(a2)2=a1×a3, 解可得r=-1, (2)当b=2时,an=(b-1)bn-1=2n-1,bn= 则Tn= Tn= 相减,得Tn= += 所以Tn=
复制答案
考点分析:
相关试题推荐
设函数f(x)=cos(x+manfen5.com 满分网π)+2manfen5.com 满分网,x∈R.
(1)求f(x)的值域;
(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=manfen5.com 满分网,求a的值.
查看答案
设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=manfen5.com 满分网其中a,b∈R.若manfen5.com 满分网=manfen5.com 满分网
则a+3b的值为    查看答案
函数manfen5.com 满分网的单调递减区间为    查看答案
已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是    cm3
manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网满足|manfen5.com 满分网|=1,|manfen5.com 满分网|=2,manfen5.com 满分网manfen5.com 满分网的夹角为60°,则|manfen5.com 满分网-manfen5.com 满分网|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.